Basu, S., Lan, X., Dlugokencky, E., Michel, S., Schwietzke, S., Miller, J. B., et al. (2022). Estimating emissions of methane consistent with atmospneric measurements of methane and δ<SUP>13</SUP>c of methane.
ATMOSPHERIC CHEMISTRY AND PHYSICS,
22(23), 15351–15377.
https://doi.org/10.5194/acp-22-15351-2022
Beck, V., Chen, H., Gerbig, C., Bergamaschi, P., Bruhwiler, L., Houweling, S., et al. (2012). Methane airborne measurements and comparison to global models during BARCA.
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,
117.
https://doi.org/10.1029/2011JD017345
Blake, D. R., Simpson, I. J., Meinardi, S. J., Andersen, M. J. S., & Bruhwiler, L. (2013). Award address (ACS award for creative advances in environmental science and technology sponsored by ACS division of environmental chemistry and ACS publications divisions). Long-term trends in global concentrations of atmospheric methane and ethane. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 245.
Blunden, J., Arndt, D. S., Achberger, C., Ackerman, S. A., Albanil, A., Alexander, P., et al. (2013). State of the climate in 2012.
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY,
94(8), S1–S240.
https://doi.org/10.1175/2013BAMSStateoftheClimate.1
Blunden, J., Arndt, D. S., Aaron-Morrison, A. P., Ackerman, S. A., Albanil, A., Alfaro, E. J., et al. (2014). STATE OF THE CLIMATE IN 2013.
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY,
95(7, S), S1–S257.
https://doi.org/10.1175/2014BAMSStateoftheClimate.1
Bruhwiler, L., Dlugokencky, E., Masarie, K., Ishizawa, M., Andrews, A., Miller, J., et al. (2014). CarbonTracker-CH<sub>4</sub>: An assimilation system for estimating emissions of atmospheric methane.
ATMOSPHERIC CHEMISTRY AND PHYSICS,
14(16), 8269–8293.
https://doi.org/10.5194/acp-14-8269-2014
Bruhwiler, Lori, Basu, S., Butler, J. H., Chatterjee, A., Dlugokencky, E., Kenney, M. A., et al. (2021). Observations of greenhouse gases as climate indicators.
CLIMATIC CHANGE,
165(1-2).
https://doi.org/10.1007/s10584-021-03001-7
Bruhwiler, Lori, Parmentier, F.-J. W., Crill, P., Leonard, M., & Palmer, P., I. (2021). The arctic carbon cycle and its response to changing climate.
CURRENT CLIMATE CHANGE REPORTS,
7(1), 14–34.
https://doi.org/10.1007/s40641-020-00169-5
Bruhwiler, L. M., Basu, S., Bergamaschi, P., Bousquet, P., Dlugokencky, E., Houweling, S., et al. (2017). US CH<sub>4</sub> emissions from oil and gas production: Have recent large increases been detected?
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,
122(7), 4070–4083.
https://doi.org/10.1002/2016JD026157
Chang, R. Y.-W., Miller, C. E., Dinardo, S. J., Karion, A., Sweeney, C., Daube, B. C., et al. (2014). Methane emissions from alaska in 2012 from CARVE airborne observations.
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA,
111(47), 16694–16699.
https://doi.org/10.1073/pnas.1412953111
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., et al. (2014). Carbon and other biogeochemical cycles. In T. Stocker, D. Qin, G. Plattner, M. Tignor, S. Allen, J. Boschung, et al. (Eds.), CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS (pp. 465–570).
Dimdore-Miles, O. B., Palmer, P. I., & Bruhwiler, L. P. (2018). Detecting changes in arctic methane emissions: Limitations of the inter-polar difference of atmospheric mole fractions.
ATMOSPHERIC CHEMISTRY AND PHYSICS,
18(24), 17895–17907.
https://doi.org/10.5194/acp-18-17895-2018
Dlugokencky, E., Houweling, S., Bruhwiler, L., Masarie, K., Lang, P., Miller, J., & Tans, P. (2003). Atmospheric methane levels off: Temporary pause or a new steady-state?
GEOPHYSICAL RESEARCH LETTERS,
30(19).
https://doi.org/10.1029/2003GL018126
Dlugokencky, E. J., Bruhwiler, L., White, J. W. C., Emmons, L. K., Novelli, P. C., Montzka, S. A., et al. (2009). Observational constraints on recent increases in the atmospheric CH<sub>4</sub> burden.
GEOPHYSICAL RESEARCH LETTERS,
36.
https://doi.org/10.1029/2009GL039780
Fletcher, S., Tans, P., Bruhwiler, L., Miller, J., & Heimann, M. (2004a). CH<sub>4</sub> sources estimated from atmospheric observations of CH<sub>4</sub> and its <SUP>13</SUP>c/<SUP>12</SUP>c isotopic ratios:: 1.: Inverse modeling of source processes -: Art. No. GB4004.
GLOBAL BIOGEOCHEMICAL CYCLES,
18(4).
https://doi.org/10.1029/2004GB002223
Fletcher, S., Tans, P., Bruhwiler, L., Miller, J., & Heimann, M. (2004b). CH<sub>4</sub> sources estimated from atmospheric observations of CH<sub>4</sub> and its <SUP>13</SUP>c/<SUP>12</SUP>c isotopic ratios:: 2.: Inverse modeling of CH<sub>4</sub> fluxes from geographical regions -: Art. No. GB4005.
GLOBAL BIOGEOCHEMICAL CYCLES,
18(4).
https://doi.org/10.1029/2004GB002224
Kasischke, E., & Bruhwiler, L. (2002). Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998.
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,
108(D1).
https://doi.org/10.1029/2001JD000461
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., et al. (2013). Three decades of global methane sources and sinks.
NATURE GEOSCIENCE,
6(10), 813–823.
https://doi.org/10.1038/NGEO1955
Lan, X., Basu, S., Schwietzke, S., Bruhwiler, L. M. P., Dlugokencky, E. J., Michel, S. E., et al. (2021). Improved constraints on global methane emissions and sinks using <i>δ</i><SUP>13</SUP>c-CH<sub>4</sub>.
GLOBAL BIOGEOCHEMICAL CYCLES,
35(6).
https://doi.org/10.1029/2021GB007000
Miller, S. M., Michalak, A. M., Detmers, R. G., Hasekamp, O. P., Bruhwiler, L. M. P., & Schwietzke, S. (2019). China’s coal mine methane regulations have not curbed growing emissions.
NATURE COMMUNICATIONS,
10.
https://doi.org/10.1038/s41467-018-07891-7
Oh, Y., Zhuang, Q., Liu, L., Welp, L. R., Lau, M. C. Y., Onstott, T. C., et al. (2020). Reduced net methane emissions due to microbial methane oxidation in a warmer arctic.
NATURE CLIMATE CHANGE,
10(4), 317+.
https://doi.org/10.1038/s41558-020-0734-z
Oh, Y., Zhuang, Q., Welp, L. R., Liu, L., Lan, X., Basu, S., et al. (2022). Improved global wetland carbon isotopic signatures support post-2006 microbial methane emission increase.
COMMUNICATIONS EARTH & ENVIRONMENT,
3(1).
https://doi.org/10.1038/s43247-022-00488-5
Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., et al. (2016). The global methane budget 2000-2012.
EARTH SYSTEM SCIENCE DATA,
8(2), 697–751.
https://doi.org/10.5194/essd-8-697-2016
Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., et al. (2017). Variability and quasi-decadal changes in the methane budget over the period 2000-2012.
ATMOSPHERIC CHEMISTRY AND PHYSICS,
17(18), 11135–11161.
https://doi.org/10.5194/acp-17-11135-2017
Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., et al. (2020). The global methane budget 2000-2017.
EARTH SYSTEM SCIENCE DATA,
12(3), 1561–1623.
https://doi.org/10.5194/essd-12-1561-2020
Schwietzke, S., Griffin, W. M., Matthews, H. S., & Bruhwiler, L. M. P. (2014a). Global bottom-up fossil fuel fugitive methane and ethane emissions inventory for atmospheric modeling.
ACS SUSTAINABLE CHEMISTRY & ENGINEERING,
2(8), 1992–2001.
https://doi.org/10.1021/sc500163h
Schwietzke, S., Griffin, W. M., Matthews, H. S., & Bruhwiler, L. M. P. (2014b). Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane.
ENVIRONMENTAL SCIENCE & TECHNOLOGY,
48(14), 7714–7722.
https://doi.org/10.1021/es501204c
Schwietzke, S., Sherwood, O. A., Bruhwiler, L. M. P., Miller, J. B., Etiope, G., Dlugokencky, E. J., et al. (2017). Upward revision of global fossil fuel methane emissions based on isotope database (vol 538, pg 88, 2016).
NATURE,
543(7645), 452.
https://doi.org/10.1038/nature21422
Simpson, I. J., Andersen, M. P. S., Meinardi, S., Bruhwiler, L., Blake, N. J., Helmig, D., et al. (2012). Long-term decline of global atmospheric ethane concentrations and implications for methane.
NATURE,
488(7412), 490–494.
https://doi.org/10.1038/nature11342
Sweeney, C., Dlugokencky, E., Miller, C. E., Wofsy, S., Karion, A., Dinardo, S., et al. (2016). No significant increase in long-term CH<sub>4</sub> emissions on north slope of alaska despite significant increase in air temperature.
GEOPHYSICAL RESEARCH LETTERS,
43(12), 6604–6611.
https://doi.org/10.1002/2016GL069292
Tian, H., Lu, C., Chen, G., Tao, B., Pan, S., Del Grosso, S. J., et al. (2012). Contemporary and projected biogenic fluxes of methane and nitrous oxide in north american terrestrial ecosystems.
FRONTIERS IN ECOLOGY AND THE ENVIRONMENT,
10(10, SI), 528–536.
https://doi.org/10.1890/120057
Tian, H., Lu, C., Ciais, P., Michalak, A. M., Canadell, J. G., Saikawa, E., et al. (2016). The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.
NATURE,
531(7593), 225+.
https://doi.org/10.1038/nature16946
Watts, J. D., Farina, M., Kimball, J. S., Schiferl, L. D., Liu, Z., Arndt, K. A., et al. (2023). Carbon uptake in eurasian boreal forests dominates the high-latitude net ecosystem carbon budget.
GLOBAL CHANGE BIOLOGY,
29(7), 1870–1889.
https://doi.org/10.1111/gcb.16553
White, J. W. C., Allen, D., Amar, P. K., Bogner, J., Bruhwiler, L., Cooley, D., et al. (2018a). Addressing uncertainties in anthropogenic methane emissions. In IMPROVING CHARACTERIZATION OF ANTHROPOGENIC METHANE EMISSIONS IN THE UNITED STATES (pp. 139–169).
White, J. W. C., Allen, D., Amar, P. K., Bogner, J., Bruhwiler, L., Cooley, D., et al. (2018b). Current inventories of methane emissions. In IMPROVING CHARACTERIZATION OF ANTHROPOGENIC METHANE EMISSIONS IN THE UNITED STATES (pp. 37–76).
White, J. W. C., Allen, D., Amar, P. K., Bogner, J., Bruhwiler, L., Cooley, D., et al. (2018c). Improving characterization of anthropogenic methane emissions in the united states <i>introduction</i>. In IMPROVING CHARACTERIZATION OF ANTHROPOGENIC METHANE EMISSIONS IN THE UNITED STATES (pp. 21–36).
White, J. W. C., Allen, D., Amar, P. K., Bogner, J., Bruhwiler, L., Cooley, D., et al. (2018d). Improving characterization of anthropogenic methane emissions in the united states <i>preface</i>. In IMPROVING CHARACTERIZATION OF ANTHROPOGENIC METHANE EMISSIONS IN THE UNITED STATES (p. XI+).
White, J. W. C., Allen, D., Amar, P. K., Bogner, J., Bruhwiler, L., Cooley, D., et al. (2018e). Improving characterization of anthropogenic methane emissions in the united states <i>summary</i>. In IMPROVING CHARACTERIZATION OF ANTHROPOGENIC METHANE EMISSIONS IN THE UNITED STATES (pp. 1–19).
White, J. W. C., Allen, D., Amar, P. K., Bogner, J., Bruhwiler, L., Cooley, D., et al. (2018f). Meeting the challenges of characterizing methane emissions. In IMPROVING CHARACTERIZATION OF ANTHROPOGENIC METHANE EMISSIONS IN THE UNITED STATES (pp. 179–184).
White, J. W. C., Allen, D., Amar, P. K., Bogner, J., Bruhwiler, L., Cooley, D., et al. (2018g). Methane emission measurement and monitoring methods. In IMPROVING CHARACTERIZATION OF ANTHROPOGENIC METHANE EMISSIONS IN THE UNITED STATES (pp. 77–138).
White, J. W. C., Allen, D., Amar, P. K., Bogner, J., Bruhwiler, L., Cooley, D., et al. (2018h). Presenting methane emission data and results. In IMPROVING CHARACTERIZATION OF ANTHROPOGENIC METHANE EMISSIONS IN THE UNITED STATES (pp. 171–178).
Xu, X. F., Tian, H. Q., Zhang, C., Liu, M. L., Ren, W., Chen, G. S., et al. (2010). Attribution of spatial and temporal variations in terrestrial methane flux over north america.
BIOGEOSCIENCES,
7(11), 3637–3655.
https://doi.org/10.5194/bg-7-3637-2010
Zhou, L., Warner, J., Nalli, N. R., Wei, Z., Oh, Y., Bruhwiler, L., et al. (2023). Spatiotemporal variability of global atmospheric methane observed from two decades of satellite hyperspectral infrared sounders.
REMOTE SENSING,
15(12).
https://doi.org/10.3390/rs15122992