• Home
  • Team
  • Science
  • Publications
  • Visual Stories
    • CH4
    • Clouds
  • News

Science Team | Daniel Jacob

Daniel Jacob

Flux Inversion Lead
Harvard

Github website OrcidID

Daniel Jacob is the Vasco McCoy Family Professor of Atmospheric Chemistry and Environmental Engineering at Harvard and works on interpretation of satellite observations of atmospheric composition.

Education

  • PhD in Environmental Engineering | Caltech | 1980 - 1985
  • Ingenieur Chimiste | ESPCI Paris | 1977-1980

Professional Experience

  • 1994-present: Professor, Harvard
  • 1992-1994: Associate Professor, Harvard
  • 1987-1992: Assistant Professor, Harvard
  • 1985- 1987: Postdoctoral Fellow, Harvard

Closing tropical data gaps to resolve global carbon-budget uncertainties

References

Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., et al. (2018). Assessment of methane emissions from the US oil and gas supply chain. SCIENCE, 361(6398), 186–188. https://doi.org/10.1126/science.aar7204
Balasus, N., Jacob, D. J., Lorente, A., Maasakkers, J. D., Parker, R. J., Boesch, H., et al. (2023). A blended TROPOMI CGOSAT satellite data product for atmospheric methane using machine learning to correct retrieval biases. ATMOSPHERIC MEASUREMENT TECHNIQUES, 16(16), 3787–3807. https://doi.org/10.5194/amt-16-3787-2023
Chen, Z., Jacob, D. J., Gautam, R., Omara, M., Stavins, R. N., Stowe, R. C., et al. (2023). Satellite quantification of methane emissions and oil-gas methaneintensities from individual countries in the middle east and north africa:implications for climate action. ATMOSPHERIC CHEMISTRY AND PHYSICS, 23(10), 5945–5967. https://doi.org/10.5194/acp-23-5945-2023
Chen, Z., Balasus, N., Lin, H., Nesser, H., & Jacob, D. J. (2024). African rice cultivation linked to rising methane. NATURE CLIMATE CHANGE, 14(2), 126–133. https://doi.org/10.1038/s41558-023-01907-x
Cusworth, D. H., Jacob, D. J., Sheng, J.-X., Benmergui, J., Turner, A. J., Brandman, J., et al. (2018). Detecting high-emitting methane sources in oil/gas fields using satellite observations. ATMOSPHERIC CHEMISTRY AND PHYSICS, 18(23), 16885–16896. https://doi.org/10.5194/acp-18-16885-2018
Cusworth, D. H., Jacob, D. J., Varon, D. J., Miller, C. C., Liu, X., Chance, K., et al. (2019). Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space. ATMOSPHERIC MEASUREMENT TECHNIQUES, 12(10), 5655–5668. https://doi.org/10.5194/amt-12-5655-2019
Cusworth, D. H., Bloom, A. A., Ma, S., Miller, C. E., Bowman, K., Yin, Y., et al. (2021). A bayesian framework for deriving sector-based methane emissions from top-down fluxes. COMMUNICATIONS EARTH & ENVIRONMENT, 2(1). https://doi.org/10.1038/s43247-021-00312-6
Cusworth, D. H., Duren, R. M., Thorpe, A. K., Pandey, S., Maasakkers, J. D., Aben, I., et al. (2021). Multisatellite imaging of a gas well blowout enables quantification of total methane emissions. GEOPHYSICAL RESEARCH LETTERS, 48(2). https://doi.org/10.1029/2020GL090864
Delwiche, K. B., Harrison, J. A., Maasakkers, J. D., Sulprizio, M. P., Worden, J., Jacob, D. J., & Sunderland, E. M. (2022). Estimating driver and pathways for hydroelectric reservoir methane emissions using a new mechanistic model. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 127(8). https://doi.org/10.1029/2022JG006908
Gordon, D., Reuland, F., Jacob, D. J., Worden, J. R., Shindell, D., & Dyson, M. (2023). Evaluating net life-cycle greenhouse gas emissions intensities from gas and coal at varying methane leakage rates. ENVIRONMENTAL RESEARCH LETTERS, 18(8). https://doi.org/10.1088/1748-9326/ace3db
Irakulis-Loitxate, I., Guanter, L., Liu, Y.-N., Varon, D. J., Maasakkers, J. D., Zhang, Y., et al. (2021). Satellite-based survey of extreme methane emissions in the permian basin. SCIENCE ADVANCES, 7(27). https://doi.org/10.1126/sciadv.abf4507
Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun, K., Liu, X., et al. (2016). Satellite observations of atmospheric methane and their value for quantifying methane emissions. ATMOSPHERIC CHEMISTRY AND PHYSICS, 16(22), 14371–14396. https://doi.org/10.5194/acp-16-14371-2016
Jacob, D. J., Varon, D. J., Cusworth, D. H., Dennison, P. E., Frankenberg, C., Gautam, R., et al. (2022). Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. ATMOSPHERIC CHEMISTRY AND PHYSICS, 22(14), 9617–9646. https://doi.org/10.5194/acp-22-9617-2022
Lu, X., Jacob, D. J., Zhang, Y., Maasakkers, J. D., Sulprizio, M. P., Shen, L., et al. (2021). Global methane budget and trend, 2010-2017: Complementarity of inverse analyses using in situ (GLOBALVIEWplus CH<sub>4</sub> ObsPack) and satellite (GOSAT) observations. ATMOSPHERIC CHEMISTRY AND PHYSICS, 21(6), 4637–4657. https://doi.org/10.5194/acp-21-4637-2021
Lu, X., Jacob, D. J., Zhang, Y., Shen, L., Sulprizio, M. P., Maasakkers, J. D., et al. (2023). Observation-derived 2010-2019 trends in methane emissions and intensities from US oil and fields tied to metrics. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 120(17). https://doi.org/10.1073/pnas.2217900120
Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Turner, A. J., Weitz, M., Wirth, T., et al. (2016). Gridded national inventory of US methane emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 50(23), 13123–13133. https://doi.org/10.1021/acs.est.6b02878
Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T. R., Nesser, H., Sheng, J.-X., et al. (2019). Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010-2015. ATMOSPHERIC CHEMISTRY AND PHYSICS, 19(11), 7859–7881. https://doi.org/10.5194/acp-19-7859-2019
Pickett-Heaps, C. A., Jacob, D. J., Wecht, K. J., Kort, E. A., Wofsy, S. C., Diskin, G. S., et al. (2011). Magnitude and seasonality of wetland methane emissions from the hudson bay lowlands (canada). ATMOSPHERIC CHEMISTRY AND PHYSICS, 11(8), 3773–3779. https://doi.org/10.5194/acp-11-3773-2011
Qu, Z., Jacob, D. J., Shen, L., Lu, X., Zhang, Y., Scarpelli, T. R., et al. (2021). Global distribution of methane emissions: A comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments. ATMOSPHERIC CHEMISTRY AND PHYSICS, 21(18), 14159–14175. https://doi.org/10.5194/acp-21-14159-2021
Qu, Z., Jacob, D. J., Zhang, Y., Shen, L., Varon, D. J., Lu, X., et al. (2022). Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT observations. ENVIRONMENTAL RESEARCH LETTERS, 17(9). https://doi.org/10.1088/1748-9326/ac8754
Scarpelli, T. R., Jacob, D. J., Octaviano Villasana, C. A., Ramirez Hernandez, I. F., Cardenas Moreno, P. R., Cortes Alfaro, E. A., et al. (2020). A gridded inventory of anthropogenic methane emissions from mexico based on mexico’s national inventory of greenhouse gases and compounds. ENVIRONMENTAL RESEARCH LETTERS, 15(10). https://doi.org/10.1088/1748-9326/abb42b
Scarpelli, T. R., Jacob, D. J., Moran, M., Reuland, F., & Gordon, D. (2022). A gridded inventory of canada’s anthropogenic methane emissions. ENVIRONMENTAL RESEARCH LETTERS, 17(1). https://doi.org/10.1088/1748-9326/ac40b1
Shen, L., Zavala-Araiza, D., Gautam, R., Omara, M., Scarpelli, T., Sheng, J., et al. (2021). Unravelling a large methane emission discrepancy in mexico using satellite observations. REMOTE SENSING OF ENVIRONMENT, 260. https://doi.org/10.1016/j.rse.2021.112461
Shen, L., Gautam, R., Omara, M., Zavala-Araiza, D., Maasakkers, J. D., Scarpelli, T. R., et al. (2022). Satellite quantification of oil and natural gas methane emissions in the US and canada including contributions from individual basins. ATMOSPHERIC CHEMISTRY AND PHYSICS, 22(17), 11203–11215. https://doi.org/10.5194/acp-22-11203-2022
Shen, L., Jacob, D. J., Gautam, R., Omara, M., Scarpelli, T. R., Lorente, A., et al. (2023). National quantifications of methane emissions from fuel exploitation using high resolution inversions of satellite observations. NATURE COMMUNICATIONS, 14(1). https://doi.org/10.1038/s41467-023-40671-6
Sheng, J.-X., Jacob, D. J., Maasakkers, J. D., Sulprizio, M. P., Zavala-Araiza, D., & Hamburg, S. P. (2017). A high-resolution (0.1° x 0.1°) inventory of methane emissions from canadian and mexican oil and gas systems. ATMOSPHERIC ENVIRONMENT, 158, 211–215. https://doi.org/10.1016/j.atmosenv.2017.02.036
Sheng, J.-X., Jacob, D. J., Turner, A. J., Maasakkers, J. D., Benmergui, J., Bloom, A. A., et al. (2018). 2010-2016 methane trends over canada, the united states, and mexico observed by the GOSAT satellite: Contributions from different source sectors. ATMOSPHERIC CHEMISTRY AND PHYSICS, 18(16), 12257–12267. https://doi.org/10.5194/acp-18-12257-2018
Sheng, J.-X., Jacob, D. J., Maasakkers, J. D., Zhang, Y., & Sulprizio, M. P. (2018). Comparative analysis of low-earth orbit (TROPOMI) and geostationary (GeoCARB, GEO-CAPE) satellite instruments for constraining methane emissions on fine regional scales: Application to the southeast US. ATMOSPHERIC MEASUREMENT TECHNIQUES, 11(12), 6379–6388. https://doi.org/10.5194/amt-11-6379-2018
Sheng, J.-X., Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sulprizio, M. P., Bloom, A. A., et al. (2018). High-resolution inversion of methane emissions in the southeast US using SEAC<SUP>4</SUP>RS aircraft observations of atmospheric methane: Anthropogenic and wetland sources. ATMOSPHERIC CHEMISTRY AND PHYSICS, 18(9), 6483–6491. https://doi.org/10.5194/acp-18-6483-2018
STAFFELBACH, T., NEFTEL, A., STAUFFER, B., & JACOB, D. (1991). A RECORD OF THE ATMOSPHERIC METHANE SINK FROM FORMALDEHYDE IN POLAR ICE CORES. NATURE, 349(6310), 603–605. https://doi.org/10.1038/349603a0
Turner, A. J., Jacob, D. J., Wecht, K. J., Maasakkers, J. D., Lundgren, E., Andrews, A. E., et al. (2015). Estimating global and north american methane emissions with high spatial resolution using GOSAT satellite data. ATMOSPHERIC CHEMISTRY AND PHYSICS, 15(12), 7049–7069. https://doi.org/10.5194/acp-15-7049-2015
Turner, A. J., Jacob, D. J., Benmergui, J., Wofsy, S. C., Maasakkers, J. D., Butz, A., et al. (2016). A large increase in US methane emissions over the past decade inferred from satellite data and surface observations. GEOPHYSICAL RESEARCH LETTERS, 43(5), 2218–2224. https://doi.org/10.1002/2016GL067987
Turner, Alexander J., Frankenbergb, C., Wennberg, P. O., & Jacob, D. J. (2017). Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 114(21), 5367–5372. https://doi.org/10.1073/pnas.1616020114
Varon, Daniel J., Jacob, D. J., McKeever, J., Jervis, D., Durak, B. O. A., Xia, Y., & Huang, Y. (2018). Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes. ATMOSPHERIC MEASUREMENT TECHNIQUES, 11(10), 5673–5686. https://doi.org/10.5194/amt-11-5673-2018
Varon, D. J., McKeever, J., Jervis, D., Maasakkers, J. D., Pandey, S., Houweling, S., et al. (2019). Satellite discovery of anomalously large methane point sources from oil/gas production. GEOPHYSICAL RESEARCH LETTERS, 46(22), 13507–13516. https://doi.org/10.1029/2019GL083798
Varon, Daniel J., Jacob, D. J., Jervis, D., & McKeever, J. (2020). Quantifying time-averaged methane emissions from individual coal mine vents with GHGSat-d satellite observations. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 54(16), 10246–10253. https://doi.org/10.1021/acs.est.0c01213
Varon, Daniel J., Jervis, D., McKeever, J., Spence, I., Gains, D., & Jacob, D. J. (2021). High-frequency monitoring of anomalous methane point sources with multispectral sentinel-2 satellite observations. ATMOSPHERIC MEASUREMENT TECHNIQUES, 14(4), 2771–2785. https://doi.org/10.5194/amt-14-2771-2021
Varon, Daniel J., Jacob, D. J., Sulprizio, M., Estrada, L. A., Downs, W. B., Shen, L., et al. (2022). Integrated methane inversion (IMI 1.0): A user-friendly, cloud-based facility for inferring high-resolution methane emissions from TROPOMI satellite observations. GEOSCIENTIFIC MODEL DEVELOPMENT, 15(14), 5787–5805. https://doi.org/10.5194/gmd-15-5787-2022
Varon, Daniel J., Jacob, D. J., Hmiel, B., Gautam, R., Lyon, D. R., Omara, M., et al. (2023). Continuous weekly monitoring of methane emissions from the permian basin by inversion of TROPOMI satellite observations. ATMOSPHERIC CHEMISTRY AND PHYSICS, 23(13), 7503–7520. https://doi.org/10.5194/acp-23-7503-2023
Wecht, K. J., Jacob, D. J., Wofsy, S. C., Kort, E. A., Worden, J. R., Kulawik, S. S., et al. (2012). Validation of TES methane with HIPPO aircraft observations: Implications for inverse modeling of methane sources. ATMOSPHERIC CHEMISTRY AND PHYSICS, 12(4), 1823–1832. https://doi.org/10.5194/acp-12-1823-2012
Wecht, K. J., Jacob, D. J., Sulprizio, M. P., Santoni, G. W., Wofsy, S. C., Parker, R., et al. (2014). Spatially resolving methane emissions in california: Constraints from the CalNex aircraft campaign and from present (GOSAT, TES) and future (TROPOMI, geostationary) satellite observations. ATMOSPHERIC CHEMISTRY AND PHYSICS, 14(15), 8173–8184. https://doi.org/10.5194/acp-14-8173-2014
Worden, J. R., Pandey, S., Zhang, Y., Cusworth, D. H., Qu, Z., Bloom, A. A., et al. (2023). Verifying methane inventories and trends with atmospheric methane data. AGU ADVANCES, 4(4). https://doi.org/10.1029/2023AV000871
Yin, Y., Chevallier, F., Ciais, P., Bousquet, P., Saunois, M., Zheng, B., et al. (2021). Accelerating methane growth rate from 2010 to 2017: Leading contributions from the tropics and east asia. ATMOSPHERIC CHEMISTRY AND PHYSICS, 21(16), 12631–12647. https://doi.org/10.5194/acp-21-12631-2021
Zhang, Y., Jacob, D. J., Maasakkers, J. D., Sulprizio, M. P., Sheng, J.-X., Gautam, R., & Worden, J. (2018). Monitoring global tropospheric OH concentrations using satellite observations of atmospheric methane. ATMOSPHERIC CHEMISTRY AND PHYSICS, 18(21), 15959–15973. https://doi.org/10.5194/acp-18-15959-2018
Zhang, Y., Gautam, R., Pandey, S., Omara, M., Maasakkers, J. D., Sadavarte, P., et al. (2020). Quantifying methane emissions from the largest oil-producing basin in the united states from space. SCIENCE ADVANCES, 6(17). https://doi.org/10.1126/sciadv.aaz5120
Zhang, Y., Jacob, D. J., Lu, X., Maasakkers, J. D., Scarpelli, T. R., Sheng, J.-X., et al. (2021). Attribution of the accelerating increase in atmospheric methane during 2010-2018 by inverse analysis of GOSAT observations. ATMOSPHERIC CHEMISTRY AND PHYSICS, 21(5), 3643–3666. https://doi.org/10.5194/acp-21-3643-2021


Lead Institution


Instrument and
Mission Management

© 2025 California Institute of Technology. All Rights Reserved.


Spacecraft and
Mission Operations