• Home
  • Team
  • Science
  • Publications
  • Visual Stories
    • CH4
    • Clouds
  • News

Science Team | Christian Frankenberg

Christian Frankenberg

Principal Investigator
Caltech/JPL

Github twitter Google Scholar ResearchID Website OrcidID

Christian Frankenberg is Professor of Environmental Sciences & Engineering (ESE) at Caltech and works on the global carbon cycle. He is the Carbon-I Principal Investigator and responsible for the quality and direction of the investigation.

Dr. Frankenberg has two decades of experience in remote sensing of atmospheric trace gases, in particular methane (C. Frankenberg et al., 2005; Christian Frankenberg, Bergamaschi, et al., 2008; Christian Frankenberg, Thorpe, et al., 2016), carbon monoxide and carbon dioxide. Dr. Frankenberg’s main research focus is the global carbon cycle and how to connect models with remote sensing data, both for the atmosphere as well as the surface (Christian Frankenberg, Aben, et al., 2011; C. Frankenberg, O’Dell, et al., 2012a; Christian Frankenberg et al., 2014, 2014, 2018; Hayashida et al., 2013; L. He et al., 2019, 2023; L. He, Magney, et al., 2020; Sander Houweling et al., 2014; Humphrey et al., 2021; Irakulis-Loitxate et al., 2021; Jacob et al., 2022). He has developed the proxy method for accurate methane retrievals (C. Frankenberg et al., 2005), improved methane spectroscopy (Christian Frankenberg, Warneke, et al., 2008a; Tran et al., 2010) to minimize biases in satellite data, developed solar chlorophyll fluorescence retrievals from space (C. Frankenberg et al., 2011; Christian Frankenberg, Aben, et al., 2011), wrote the IMAP pre-processor code for OCO-2/3, organized a methane workshop with global experts at Caltech and is currently leading the land surface model development in the Climate Modelling Alliance (CliMA). He also c0-organized the first airborne campaigns for controlled released experiments of methane (Andrew K. Thorpe, Frankenberg, Aubrey, et al., 2016) as well as the first wide-area coverage investigation in the Four Corners area (Christian Frankenberg, Thorpe, et al., 2016).

Education

  • PhD in Environmental Physics | University of Heidelberg, Germany | 2002 - 2005
  • Diploma in Geoecology | University of Bayreuth, Germany | 1996-2002

Professional Experience

  • 2018-present: Professor, Caltech
  • 2015-2018: Associate Professor, Caltech
  • 2010-present: Scientist, Earth Atmospheric Science, JPL
  • 2006- 2009: VENI Postdoc at SRON-Netherlands Institute of Space Research

Closing tropical data gaps to resolve global carbon-budget uncertainties

References

Alexe, M., Bergamaschi, P., Segers, A., Detmers, R., Butz, A., Hasekamp, O., et al. (2014). Inverse modeling of CH4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY. Atmos. Chem. Phys. Discuss, 14, 11493–11539. https://doi.org/10.5194/acp-15-113-2015
Alexe, Mihai, Bergamaschi, P., Segers, A., Detmers, R., Butz, A., Hasekamp, O., et al. (2015). Inverse modelling of CH 4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY. Atmospheric Chemistry and Physics, 15(1), 113–133. https://doi.org/10.5194/acp-15-113-2015
Aubrey, A., Frankenberg, C., Green, R., Eastwood, M., Thompson, D., & Thorpe, A. (2015). Crosscutting airborne remote sensing technologies for oil and gas and earth science applications. In Offshore technology conference (pp. OTC–25984). OTC. https://doi.org/10.4043/25984-ms
Ayasse, A. K., Thorpe, A. K., Roberts, D. A., Funk, C. C., Dennison, P. E., Frankenberg, C., et al. (2018). Evaluating the effects of surface properties on methane retrievals using a synthetic airborne visible/infrared imaging spectrometer next generation (AVIRIS-NG) image. Remote Sensing of Environment, 215, 386–397. https://doi.org/10.1016/j.rse.2018.06.018
Bacour, Cedric, Maignan, F., Peylin, P., Macbean, N., Bastrikov, V., Joiner, J., et al. (2019). Differences between OCO-2 and GOME-2 SIF products from a model-data fusion perspective. Journal of Geophysical Research: Biogeosciences, 124(10), 3143–3157. https://doi.org/10.1029/2018jg004938
Bacour, Cédric, Maignan, F., MacBean, N., Porcar-Castell, A., Flexas, J., Frankenberg, C., et al. (2019). Improving estimates of gross primary productivity by assimilating solar-induced fluorescence satellite retrievals in a terrestrial biosphere model using a process-based SIF model. Journal of Geophysical Research: Biogeosciences, 124(11), 3281–3306. https://doi.org/10.1029/2019jg005040
Basu, S., Krol, M., Butz, A., Clerbaux, C., Sawa, Y., Machida, T., et al. (2014). The seasonal variation of the CO2 flux over tropical asia estimated from GOSAT, CONTRAIL, and IASI. Geophysical Research Letters, 41(5), 1809–1815. https://doi.org/10.1002/2013gl059105
Beck, V., Chen, H., Gerbig, C., Bergamaschi, P., Bruhwiler, L., Houweling, S., et al. (2012). Methane airborne measurements and comparison to global models during BARCA. Journal of Geophysical Research: Atmospheres, 117(D15). https://doi.org/10.1029/2011jd017345
Bergamaschi, P., Frankenberg, C., Meirink, J., Krol, M., Dentener, F., Wagner, T., et al. (2007). Composition and chemistry-D02304-satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations (DOI 10.1029/2006JD007268). Journal of Geophysical Research-Part D-Atmospheres, 112(2). https://doi.org/10.1029/2006jd007268
Bergamaschi, Peter, Frankenberg, C., Meirink, J. F., Krol, M., Dentener, F., Wagner, T., et al. (2007). Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations. Journal of Geophysical Research: Atmospheres, 112(D2). https://doi.org/10.1029/2006jd007268
Bergamaschi, Peter, Frankenberg, C., Meirink, J. F., Krol, M., Villani, M. G., Houweling, S., et al. (2009). Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals. Journal of Geophysical Research: Atmospheres, 114(D22). https://doi.org/10.1029/2009jd012287
Bergamaschi, Peter, Houweling, S., Segers, A., Krol, M., Frankenberg, C., Scheepmaker, R., et al. (2013). Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements. Journal of Geophysical Research: Atmospheres, 118(13), 7350–7369. https://doi.org/10.1002/jgrd.50480
Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S., & Frankenberg, C. (2010). Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science, 327(5963), 322–325. https://doi.org/10.1126/science.1175176
Bloom, A. A., Worden, J., Jiang, Z., Worden, H., Kurosu, T., Frankenberg, C., & Schimel, D. (2015). Remote-sensing constraints on south america fire traits by bayesian fusion of atmospheric and surface data. Geophysical Research Letters, 42(4), 1268–1274. https://doi.org/10.1002/2014gl062584
Borchardt, J., Gerilowski, K., Krautwurst, S., Bovensmann, H., Thorpe, A. K., Thompson, D. R., et al. (2020). Detection and quantification of CH 4 plumes using the WFM-DOAS retrieval on AVIRIS-NG hyperspectral data. Atmospheric Measurement Techniques Discussions, 2020, 1–34. https://doi.org/10.5194/amt-14-1267-2021
Borchardt, J., Gerilowski, K., Krautwurst, S., Bovensmann, H., Thorpe, A. K., Thompson, D. R., et al. (2021). Detection and quantification of CH 4 plumes using the WFM-DOAS retrieval on AVIRIS-NG hyperspectral data. Atmospheric Measurement Techniques, 14(2), 1267–1291. https://doi.org/10.5194/amt-14-1267-2021
Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E., Brunke, E.-G., Carouge, C., et al. (2011). Source attribution of the changes in atmospheric methane for 2006–2008. Atmospheric Chemistry and Physics, 11(8), 3689–3700. https://doi.org/10.5194/acp-11-3689-2011
Bovensmann, H., Aben, I., Van Roozendael, M., Kühl, S., Gottwald, M., Von Savigny, C., et al. (2011). SCIAMACHY’s view of the changing earth’s environment. SCIAMACHY-Exploring the Changing Earth’s Atmosphere, 175–216. https://doi.org/10.1007/978-90-481-9896-2_10
Braghiere, R. K., Wang, Y., Doughty, R., Sousa, D., Magney, T., Widlowski, J.-L., et al. (2021). Accounting for canopy structure improves hyperspectral radiative transfer and sun-induced chlorophyll fluorescence representations in a new generation earth system model. Remote Sensing of Environment, 261, 112497. https://doi.org/10.1016/j.rse.2021.112497
Braghiere, R. K., Fisher, J. B., Miner, K. R., Miller, C. E., Worden, J. R., Schimel, D. S., & Frankenberg, C. (2023). Tipping point in north american arctic-boreal carbon sink persists in new generation earth system models despite reduced uncertainty. Environmental Research Letters, 18(2), 025008. https://doi.org/10.1088/1748-9326/acb226
Buchwitz, M., Reuter, M., Schneising, O., Boesch, H., Guerlet, S., Dils, B., et al. (2015). Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets. Remote Sens. Environ, 162(1), 344–362. https://doi.org/10.5194/dach2022-71
Buchwitz, M., Reuter, M., Schneising, O., Hewson, W., Detmers, R. G., Boesch, H., et al. (2017). Global satellite observations of column-averaged carbon dioxide and methane: The GHG-CCI XCO2 and XCH4 CRDP3 data set. Remote Sensing of Environment, 203, 276–295. https://doi.org/10.1016/j.rse.2016.12.027
Buchwitz, M., Schneising, O., Reuter, M., Heymann, J., Krautwurst, S., Bovensmann, H., et al. (2017). Satellite-derived methane hotspot emission estimates using a fast data-driven method. Atmospheric Chemistry and Physics, 17(9), 5751–5774. https://doi.org/10.5194/acp-2016-755-rc2
Butz, André, Hasekamp, O. P., Frankenberg, C., & Aben, I. (2009). Retrievals of atmospheric CO 2 from simulated space-borne measurements of backscattered near-infrared sunlight: Accounting for aerosol effects. Applied Optics, 48(18), 3322–3336. https://doi.org/10.1364/ao.48.003322
Butz, A., Hasekamp, O., Frankenberg, C., Vidot, J., & Aben, I. (2010). CH4 retrievals from space-based solar backscatter measurements: Performance evaluation against simulated aerosol and cirrus loaded scenes. Journal of Geophysical Research: Atmospheres, 115(D24). https://doi.org/10.1029/2010jd014514
Butz, André, Guerlet, S., Hasekamp, O., Schepers, D., Galli, A., Aben, I., et al. (2011). Toward accurate CO2 and CH4 observations from GOSAT. Geophysical Research Letters, 38(14). https://doi.org/10.5194/egusphere-egu2020-3576
Butzin, M., Werner, M., Masson-Delmotte, V., Risi, C., Frankenberg, C., Gribanov, K., et al. (2014). Variations of oxygen-18 in west siberian precipitation during the last 50 years. Atmospheric Chemistry and Physics, 14(11), 5853–5869. https://doi.org/10.5194/acp-14-5853-2014
Chang, C. Y., Guanter, L., Frankenberg, C., Köhler, P., Gu, L., Magney, T. S., et al. (2020). Systematic assessment of retrieval methods for canopy far-red solar-induced chlorophyll fluorescence using high-frequency automated field spectroscopy. Journal of Geophysical Research: Biogeosciences, 125(7), e2019JG005533. https://doi.org/10.1029/2019jg005533
Chen, A., Mao, J., Ricciuto, D., Xiao, J., Frankenberg, C., Li, X., et al. (2021). Moisture availability mediates the relationship between terrestrial gross primary production and solar-induced chlorophyll fluorescence: Insights from global-scale variations. Global Change Biology, 27(6), 1144–1156. https://doi.org/10.1111/gcb.15373
Cheng, R., Magney, T. S., Dutta, D., Bowling, D. R., Logan, B. A., Burns, S. P., et al. (2020). Decomposing reflectance spectra to track gross primary production in a subalpine evergreen forest. Biogeosciences, 17(18), 4523–4544. https://doi.org/10.5194/bg-2020-41-rc2
Cheng, R., Magney, T. S., Orcutt, E. L., Pierrat, Z., Köhler, P., Bowling, D. R., et al. (2022). Evaluating photosynthetic activity across arctic-boreal land cover types using solar-induced fluorescence. Environmental Research Letters, 17(11), 115009. https://doi.org/10.1088/1748-9326/ac9dae
Cheng, R., Köhler, P., & Frankenberg, C. (2022). Impact of radiation variations on temporal upscaling of instantaneous solar-induced chlorophyll fluorescence. Agricultural and Forest Meteorology, 327, 109197. https://doi.org/10.1016/j.agrformet.2022.109197
Cole, R. K., Fredrick, C., Nguyen, N. H., Frankenberg, C., & Diddams, S. A. (2023). Precision atmospheric wind measurements with a frequency comb calibrated laser heterodyne radiometer. In Optics and photonics for sensing the environment (pp. ETu5E–5). Optica Publishing Group. https://doi.org/10.1364/es.2023.etu5e.5
Connor, B., Bösch, H., McDuffie, J., Taylor, T., Fu, D., Frankenberg, C., et al. (2016). Quantification of uncertainties in OCO-2 measurements of XCO 2: Simulations and linear error analysis. Atmospheric Measurement Techniques, 9(10), 5227–5238. https://doi.org/10.5194/amt-9-5227-2016
Cressot, C., Chevallier, F., Bousquet, P., Crevoisier, C., Dlugokencky, E., Fortems-Cheiney, A., et al. (2013). On the consistency between global and regional methane emissions inferred from SCIAMACHY, TANSO-FTS, IASI and surface measurements. Atmos. Chem. Phys. Discuss, 13, 8023–8064. https://doi.org/10.5194/acp-14-577-2014
Crisp, D., Fischer, B., O’C, D., Frankenberg, C., Basilio, R., Boesch, H., et al. (2011). The ACOS XCO 2 retrieval algorithm, part II. Global XCO 2 data characterization. Atmos Meas Tech Discus, 4, 1–59. https://doi.org/10.1016/j.atmosenv.2023.119933
Crisp, D., Pollock, H. R., Rosenberg, R., Chapsky, L., Lee, R. A., Oyafuso, F. A., et al. (2017). The on-orbit performance of the orbiting carbon observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmospheric Measurement Techniques, 10(1), 59–81. https://doi.org/10.5194/amt-2016-281-rc1
Cusworth, Daniel H., Jacob, D. J., Varon, D. J., Chan Miller, C., Liu, X., Chance, K., et al. (2019). Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space. Atmospheric Measurement Techniques, 12(10), 5655–5668. https://doi.org/10.5194/amt-2019-202-rc2
Cusworth, Daniel H., Duren, R. M., Thorpe, A. K., Pandey, S., Maasakkers, J. D., Aben, I., et al. (2021). Multisatellite imaging of a gas well blowout enables quantification of total methane emissions. Geophysical Research Letters, 48(2), e2020GL090864. https://doi.org/10.1029/2020gl090864
Cusworth, Daniel H., Duren, R. M., Thorpe, A. K., Eastwood, M. L., Green, R. O., Dennison, P. E., et al. (2021). Quantifying global power plant carbon dioxide emissions with imaging spectroscopy. AGU Advances, 2(2), e2020AV000350. https://doi.org/10.1029/2020av000350
Cusworth, Daniel H., Thorpe, A. K., Ayasse, A. K., Stepp, D., Heckler, J., Asner, G. P., et al. (2022). Strong methane point sources contribute a disproportionate fraction of total emissions across multiple basins in the united states. Proceedings of the National Academy of Sciences, 119(38), e2202338119. https://doi.org/10.1073/pnas.2202338119
Dechant, B., Ryu, Y., Badgley, G., Köhler, P., Rascher, U., Migliavacca, M., et al. (2022). NIRVP: A robust structural proxy for sun-induced chlorophyll fluorescence and photosynthesis across scales. Remote Sensing of Environment, 268, 112763. https://doi.org/10.31223/x5zs35
Dils, Bart, De Mazière, M., Müller, J., Blumenstock, T., Buchwitz, M., De Beek, R., et al. (2006). Comparisons between SCIAMACHY and ground-based FTIR data for total columns of CO, CH 4, CO 2 and n 2 o. Atmospheric Chemistry and Physics, 6(7), 1953–1976. https://doi.org/10.5194/acp-6-1953-2006
Dils, B., Buchwitz, M., Reuter, M., Schneising, O., Boesch, H., Parker, R., et al. (2014a). Comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements from the TCCON, atmos. Meas. Tech, 7(6), 1723–1744. https://doi.org/10.5194/amt-7-1723-2014
Dils, B., Buchwitz, M., Reuter, M., Schneising, O., Boesch, H., Parker, R., et al. (2014b). The greenhouse gas climate change initiative (GHG-CCI): Comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO 2 and CH 4 retrieval algorithm products with measurements from the TCCON. Atmospheric Measurement Techniques, 7(6), 1723–1744. https://doi.org/10.5194/amt-7-1723-2014
Doughty, R., Köhler, P., Frankenberg, C., Magney, T. S., Xiao, X., Qin, Y., et al. (2019). TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the amazon forest. Proceedings of the National Academy of Sciences, 116(44), 22393–22398. https://doi.org/10.1073/pnas.1908157116
Doughty, R., Kurosu, T., Parazoo, N., Köhler, P., Wang, Y., Sun, Y., & Frankenberg, C. (2021). Global GOSAT, OCO-2 and OCO-3 solar induced chlorophyll fluorescence datasets. Earth System Science Data Discussions, 2021, 1–28. https://doi.org/10.5194/essd-2021-237-supplement
Duren, R. M., Thorpe, A. K., Foster, K. T., Rafiq, T., Hopkins, F. M., Yadav, V., et al. (2019). California’s methane super-emitters. Nature, 575(7781), 180–184. https://doi.org/10.21203/rs.3.rs-952096/v1
Dutta, D., Schimel, D. S., Sun, Y., Van Der Tol, C., & Frankenberg, C. (2019). Optimal inverse estimation of ecosystem parameters from observations of carbon and energy fluxes. Biogeosciences, 16(1), 77–103. https://doi.org/10.5194/bg-16-77-2019
Duveiller, G., Filipponi, F., Walther, S., Köhler, P., Frankenberg, C., Guanter, L., & Cescatti, A. (2020). A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity. Earth System Science Data, 12(2), 1101–1116. https://doi.org/10.5194/essd-12-1101-2020
Ehret, G., Bousquet, P., Pierangelo, C., Alpers, M., Millet, B., Abshire, J. B., et al. (2017). MERLIN: A french-german space lidar mission dedicated to atmospheric methane. Remote Sensing, 9(10), 1052. https://doi.org/10.3390/rs9101052
Eldering, A., Wennberg, P., Crisp, D., Schimel, D., Gunson, M., Chatterjee, A., et al. (2017). The orbiting carbon observatory-2 early science investigations of regional carbon dioxide fluxes. Science, 358(6360), eaam5745. https://doi.org/10.1126/science.aam5745
Fisher, J. B., Sikka, M., Sitch, S., Ciais, P., Poulter, B., Galbraith, D., et al. (2013). African tropical rainforest net carbon dioxide fluxes in the twentieth century. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1625), 20120376. https://doi.org/10.1098/rstb.2012.0376
Foote, M. D., Dennison, P. E., Thorpe, A. K., Thompson, D. R., Jongaramrungruang, S., Frankenberg, C., & Joshi, S. C. (2020). Fast and accurate retrieval of methane concentration from imaging spectrometer data using sparsity prior. IEEE Transactions on Geoscience and Remote Sensing, 58(9), 6480–6492. https://doi.org/10.1109/tgrs.2020.2976888
Frankenberg, Christian. (2005). Retrieval of methane and carbon monoxide using near infrared spectra recorded by SCIAMACHY onboard ENVISAT: Algorithm development and data analysis (PhD thesis). https://doi.org/10.5194/acp-5-9-2005
Frankenberg, C., Meirink, J., Weele, M. van, Platt, U., & Wagner, T. (2005). Assessing methane emissions from global space-borne observations. Science, 308(5724), 1010–1014. https://doi.org/10.1126/science.1106644
Frankenberg, Christian, Platt, U., & Wagner, T. (2005). Iterative maximum a posteriori (IMAP)-DOAS for retrieval of strongly absorbing trace gases: Model studies for CH 4 and CO 2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT. Atmospheric Chemistry and Physics, 5(1), 9–22. https://doi.org/10.5194/acp-5-9-2005
Frankenberg, C., Meirink, J., Bergamaschi, P., Goede, A., Heimann, M., Körner, S., et al. (2006). Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: Analysis of the years 2003 and 2004. Journal of Geophysical Research, 111(D7), D07303. https://doi.org/10.1029/2005jd006235
Frankenberg, Christian, Warneke, T., Butz, A., Aben, I., Hase, F., Spietz, P., & Brown, L. (2008a). Methane spectroscopy in the near infrared and its implication on atmospheric retrievals. Atmospheric Chemistry and Physics Discussions, 8(3), 10021–10055. https://doi.org/10.5194/acp-8-5061-2008
Frankenberg, Christian, Warneke, T., Butz, A., Aben, I., Hase, F., Spietz, P., & Brown, L. R. (2008b). Pressure broadening in the 2\(\nu\) 3 band of methane and its implication on atmospheric retrievals. Atmospheric Chemistry and Physics, 8(17), 5061–5075. https://doi.org/10.5194/acp-8-5061-2008
Frankenberg, Christian, Bergamaschi, P., Butz, A., Houweling, S., Meirink, J. F., Notholt, J., et al. (2008). Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT. Geophysical Research Letters, 35(15). https://doi.org/10.1029/2008gl034300
Frankenberg, Christian, Yoshimura, K., Warneke, T., Aben, I., Butz, A., Deutscher, N., et al. (2009). Dynamic processes governing lower-tropospheric HDO/H2O ratios as observed from space and ground. Science, 325(5946), 1374–1377. https://doi.org/10.1126/science.1173791
Frankenberg, C., Butz, A., & Toon, G. (2011). Disentangling chlorophyll fluorescence from atmospheric scattering effects in O2 a-band spectra of reflected sun-light. Geophysical Research Letters, 38(3). https://doi.org/10.1029/2010gl045896
Frankenberg, Christian, Aben, I., Bergamaschi, P., Dlugokencky, E., Van Hees, R., Houweling, S., et al. (2011). Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability. Journal of Geophysical Research: Atmospheres, 116(D4). https://doi.org/10.1029/2010jd014849
Frankenberg, Christian, Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S., Lee, J.-E., et al. (2011). New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophysical Research Letters, 38(17). https://doi.org/10.1029/2011gl048738
Frankenberg, C., Hasekamp, O., O’Dell, C., Sanghavi, S., Butz, A., & Worden, J. (2012). Aerosol information content analysis of multi-angle high spectral resolution measurements and its benefit for high accuracy greenhouse gas retrievals. Atmospheric Measurement Techniques, 5(7), 1809–1821. https://doi.org/10.5194/amt-5-1809-2012
Frankenberg, C., O’Dell, C., Guanter, L., & McDuffie, J. (2012a). Chlorophyll fluorescence remote sensing from space in scattering atmospheres: Implications for its retrieval and interferences with atmospheric CO2 retrievals. https://doi.org/10.5194/amt-5-2081-2012
Frankenberg, C., O’Dell, C., Guanter, L., & McDuffie, J. (2012b). Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: Implications for its retrieval and interferences with atmospheric CO2 retrievals. Meas. Tech, 5, 2081–2094. https://doi.org/10.5194/amt-5-2081-2012
Frankenberg, Christian, Berry, J., Guanter, L., & Joiner, J. (2013). Remote sensing of terrestrial chlorophyll fluorescence from space. SPIE Newsroom, Art–No. https://doi.org/10.1117/2.1201302.004725
Frankenberg, C., Wunch, D., Toon, G., Risi, C., Scheepmaker, R., Lee, J., et al. (2013). Water vapor isotopologue retrievals from high-resolution GOSAT shortwave infrared spectra. https://doi.org/10.5194/amt-6-263-2013
Frankenberg, Christian, O’Dell, C., Berry, J., Guanter, L., Joiner, J., Köhler, P., et al. (2014). Prospects for chlorophyll fluorescence remote sensing from the orbiting carbon observatory-2. Remote Sensing of Environment, 147, 1–12. https://doi.org/10.1016/j.rse.2014.02.007
Frankenberg, C., Pollock, R., Lee, R., Rosenberg, R., Blavier, J.-F., Crisp, D., et al. (2015). The orbiting carbon observatory (OCO-2): Spectrometer performance evaluation using pre-launch direct sun measurements. Atmospheric Measurement Techniques, 8(1), 301–313. https://doi.org/10.5194/amt-8-301-2015
Frankenberg, Christian, Thorpe, A. K., Thompson, D. R., Hulley, G., Kort, E. A., Vance, N., et al. (2016). Airborne methane remote measurements reveal heavy-tail flux distribution in four corners region. Proceedings of the National Academy of Sciences, 113(35), 9734–9739. https://doi.org/10.1073/pnas.1605617113
Frankenberg, Christian, Drewry, D., Geier, S., Verma, M., Lawson, P., Stutz, J., & Grossmann, K. (2016). Remote sensing of solar induced chlorophyll fluorescence from satellites, airplanes and ground-based stations. In 2016 IEEE international geoscience and remote sensing symposium (IGARSS) (pp. 1707–1710). IEEE. https://doi.org/10.1109/igarss.2016.7729436
Frankenberg, Christian, Kulawik, S. S., Wofsy, S. C., Chevallier, F., Daube, B., Kort, E. A., et al. (2016). Using airborne HIAPER pole-to-pole observations (HIPPO) to evaluate model and remote sensing estimates of atmospheric carbon dioxide. Atmospheric Chemistry and Physics, 16(12), 7867–7878. https://doi.org/10.5194/acp-2015-961-rc2
Frankenberg, Christian, Köhler, P., Magney, T. S., Geier, S., Lawson, P., Schwochert, M., et al. (2018). The chlorophyll fluorescence imaging spectrometer (CFIS), mapping far red fluorescence from aircraft. Remote Sensing of Environment, 217, 523–536. https://doi.org/10.1016/j.rse.2018.08.032
Frankenberg, Christian, Yin, Y., Byrne, B., He, L., & Gentine, P. (2021). Comment on “recent global decline of CO2 fertilization effects on vegetation photosynthesis.” Science, 373(6562), eabg2947. https://doi.org/10.31223/x5k89v
Gensheimer, J., Turner, A. J., Köhler, P., Frankenberg, C., & Chen, J. (2022). A convolutional neural network for spatial downscaling of satellite-based solar-induced chlorophyll fluorescence (SIFnet). Biogeosciences, 19(6), 1777–1793. https://doi.org/10.5194/bg-2021-348-supplement
Gerlein-Safdi, C., Köhler, P., Wang, S., Flanner, M., Keppel-Aleks, G., & Frankenberg, C. (2023). Algae blooms on the greenland ice sheet detected through solar-induced fluorescence. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/tgrs.2023.3305194/mm1
Grossmann, K., Frankenberg, C., Magney, T. S., Hurlock, S. C., Seibt, U., & Stutz, J. (2018). PhotoSpec: A new instrument to measure spatially distributed red and far-red solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 216, 311–327. https://doi.org/10.1016/j.rse.2018.07.002
Gryazin, V., Risi, C., Jouzel, J., Kurita, N., Worden, J., Frankenberg, C., et al. (2014a). The added value of water isotopic measurements for understanding model biases in simulating the water cycle over western siberia. Atmospheric Chemistry & Physics, 14(4). https://doi.org/10.5194/acp-14-9807-2014
Gryazin, V., Risi, C., Jouzel, J., Kurita, N., Worden, J., Frankenberg, C., et al. (2014b). To what extent could water isotopic measurements help us understand model biases in the water cycle over western siberia. Atmospheric Chemistry and Physics, 14(18), 9807–9830. https://doi.org/10.5194/acp-14-9807-2014
Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P. E., Gómez-Dans, J., Kuze, A., et al. (2012). Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sensing of Environment, 121, 236–251. https://doi.org/10.1016/j.rse.2012.02.006
Guanter, L., Rossini, M., Colombo, R., Meroni, M., Frankenberg, C., Lee, J.-E., & Joiner, J. (2013). Using field spectroscopy to assess the potential of statistical approaches for the retrieval of sun-induced chlorophyll fluorescence from ground and space. Remote Sensing of Environment, 133, 52–61. https://doi.org/10.1016/j.rse.2013.01.017
Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A., et al. (2014a). Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences, 111(14), E1327–E1333. https://doi.org/10.1007/978-1-4020-3218-9_21
Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A., et al. (2014b). Reply to magnani et al.: Linking large-scale chlorophyll fluorescence observations with cropland gross primary production. Proceedings of the National Academy of Sciences, 111(25), E2511–E2511. https://doi.org/10.1073/pnas.1406996111
Guanter, L., Aben, I., Tol, P., Krijger, J., Hollstein, A., Köhler, P., et al. (2015). Potential of the TROPOspheric monitoring instrument (TROPOMI) onboard the sentinel-5 precursor for the monitoring of terrestrial chlorophyll fluorescence. Atmospheric Measurement Techniques, 8(3), 1337–1352. https://doi.org/10.5194/amt-8-1337-2015
Guanter, L., Bacour, C., Schneider, A., Aben, I., Kempen, T. A. van, Maignan, F., et al. (2021). The TROPOSIF global sun-induced fluorescence dataset from the sentinel-5P TROPOMI mission. Earth System Science Data, 13(11), 5423–5440. https://doi.org/10.5194/essd-13-5423-2021
Hayashida, S., Ono, A., Yoshizaki, S., Frankenberg, C., Takeuchi, W., & Yan, X. (2013). Methane concentrations over monsoon asia as observed by SCIAMACHY: Signals of methane emission from rice cultivation. Remote Sensing of Environment, 139, 246–256. https://doi.org/10.1016/j.rse.2013.08.008
He, L., Zeng, Z.-C., Pongetti, T. J., Wong, C., Liang, J., Gurney, K. R., et al. (2019). Atmospheric methane emissions correlate with natural gas consumption from residential and commercial sectors in los angeles. Geophysical Research Letters, 46(14), 8563–8571. https://doi.org/10.1029/2019gl083400
He, L., Magney, T., Dutta, D., Yin, Y., Köhler, P., Grossmann, K., et al. (2020). From the ground to space: Using solar-induced chlorophyll fluorescence to estimate crop productivity. Geophysical Research Letters, 47(7), e2020GL087474. https://doi.org/10.1029/2020gl087474
He, L., Wood, J. D., Sun, Y., Magney, T., Dutta, D., Köhler, P., et al. (2020). Tracking seasonal and interannual variability in photosynthetic downregulation in response to water stress at a temperate deciduous forest. Journal of Geophysical Research: Biogeosciences, 125(8), e2018JG005002. https://doi.org/10.1029/2018jg005002
He, L., Wei, J., Wang, Y., Shang, Q., Liu, J., Yin, Y., et al. (2022). Marked impacts of pollution mitigation on crop yields in china. Earth’s Future, 10(11), e2022EF002936. https://doi.org/10.1029/2022ef002936
He, L., Byrne, B., Yin, Y., Liu, J., & Frankenberg, C. (2022). Remote-sensing derived trends in gross primary production explain increases in the CO2 seasonal cycle amplitude. Global Biogeochemical Cycles, 36(9), e2021GB007220. https://doi.org/10.1029/2021gb007220
He, L., Rosa, L., Lobell, D. B., Wang, Y., Yin, Y., Doughty, R., et al. (2023). The weekly cycle of photosynthesis in europe reveals the negative impact of particulate pollution on ecosystem productivity. Proceedings of the National Academy of Sciences, 120(49), e2306507120. https://doi.org/10.1073/pnas.2306507120
He, Y., Risi, C., Gao, J., Masson-Delmotte, V., Yao, T., Lai, C.-T., et al. (2015). Impact of atmospheric convection on south tibet summer precipitation isotopologue composition using a combination of in situ measurements, satellite data, and atmospheric general circulation modeling. Journal of Geophysical Research: Atmospheres, 120(9), 3852–3871. https://doi.org/10.1002/2014jd022180
Holtzman, N., Wang, Y., Wood, J. D., Frankenberg, C., & Konings, A. G. (2023). Constraining plant hydraulics with microwave radiometry in a land surface model: Impacts of temporal resolution. Water Resources Research, 59(11), e2023WR035481. https://doi.org/10.22541/essoar.168652288.81621833/v1
Houweling, Sea, Röckmann, T., Aben, I., Keppler, F., Krol, M., Meirink, J., et al. (2006). Atmospheric constraints on global emissions of methane from plants. Geophysical Research Letters, 33(15). https://doi.org/10.1029/2006gl026162
Houweling, Sander, Krol, M., Bergamaschi, P., Frankenberg, C., Dlugokencky, E., Morino, I., et al. (2014). A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements. Atmospheric Chemistry and Physics, 14(8), 3991–4012. https://doi.org/10.5194/acp-14-3991-2014
Hulley, G. C., Duren, R. M., Hopkins, F. M., Hook, S. J., Vance, N., Guillevic, P., et al. (2016). High spatial resolution imaging of methane and other trace gases with the airborne hyperspectral thermal emission spectrometer (HyTES). Atmospheric Measurement Techniques, 9(5), 2393–2408. https://doi.org/10.5194/amt-9-2393-2016
Humphrey, V., & Frankenberg, C. (2022). Continuous ground monitoring of vegetation optical depth and water content with GPS signals. Biogeosciences Discussions, 2022, 1–44. https://doi.org/10.5194/bg-2022-84-supplement
Humphrey, V., & Frankenberg, C. (2023). Continuous ground monitoring of vegetation optical depth and water content with GPS signals. Biogeosciences, 20(9), 1789–1811. https://doi.org/10.5194/bg-2022-84-supplement
Humphrey, V., Berg, A., Ciais, P., Gentine, P., Jung, M., Reichstein, M., et al. (2021). Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature, 592(7852), 65–69. https://doi.org/10.1038/s41586-021-03325-5
Irakulis-Loitxate, I., Guanter, L., Liu, Y.-N., Varon, D. J., Maasakkers, J. D., Zhang, Y., et al. (2021). Satellite-based survey of extreme methane emissions in the permian basin. Science Advances, 7(27), eabf4507. https://doi.org/10.31223/x5k661
Islam, S. N., Jackson, P. L., Sweeney, C., McKain, K., Frankenberg, C., Aben, I., et al. (2021). Methane growth rate estimation and its causes in western canada using satellite observations. Journal of Geophysical Research: Atmospheres, 126(21), e2020JD033948. https://doi.org/10.1029/2020jd033948
Jackson, R. B., Saunois, M., Bousquet, P., Canadell, J. G., Poulter, B., Stavert, A. R., et al. (2020). Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environmental Research Letters, 15(7), 071002. https://doi.org/10.1088/1748-9326/ab9ed2
Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun, K., Liu, X., et al. (2016). Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmospheric Chemistry and Physics, 16(22), 14371–14396. https://doi.org/10.5194/acp-16-14371-2016
Jacob, D. J., Varon, D. J., Cusworth, D. H., Dennison, P. E., Frankenberg, C., Gautam, R., et al. (2022). Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. Atmospheric Chemistry and Physics, 22(14), 9617–9646. https://doi.org/10.5194/acp-22-9617-2022
Jeong, S.-J., Schimel, D., Frankenberg, C., Drewry, D. T., Fisher, J. B., Verma, M., et al. (2017). Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests. Remote Sensing of Environment, 190, 178–187. https://doi.org/10.1016/j.rse.2016.11.021
Jeyaram, R., Sanghavi, S., & Frankenberg, C. (2022). vSmartMOM. Jl: An open-source julia package for atmospheric radiative transfer and remote sensing tools. Journal of Open Source Software, 7(80), 4575. https://doi.org/10.21105/joss.04575
Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A., Middleton, E., et al. (2013). Global monitoring of terrestrial chlorophyll fluorescence from moderate spectral resolution near-infrared satellite measurements: Methodology, simulations, and application to GOME-2. Atmospheric Measurement Techniques Discussions, 6(2), 3883–3930. https://doi.org/10.5194/amt-6-2803-2013
Joiner, Joanna, Yoshida, Y., Köehler, P., Campbell, P., Frankenberg, C., Tol, C. van der, et al. (2020). Systematic orbital geometry-dependent variations in satellite solar-induced fluorescence (SIF) retrievals. Remote Sensing, 12(15), 2346. https://doi.org/10.3390/rs12152346
Jongaramrungruang, S., Frankenberg, C., Matheou, G., Thorpe, A. K., Thompson, D. R., Kuai, L., & Duren, R. M. (2019). Towards accurate methane point-source quantification from high-resolution 2-d plume imagery. Atmospheric Measurement Techniques, 12(12), 6667–6681. https://doi.org/10.5194/amt-12-6667-2019
Jongaramrungruang, S., Matheou, G., Thorpe, A. K., Zeng, Z.-C., & Frankenberg, C. (2021). Remote sensing of methane plumes: Instrument tradeoff analysis for detecting and quantifying local sources at global scale. Atmospheric Measurement Techniques, 14(12), 7999–8017. https://doi.org/10.5194/amt-14-7999-2021
Jongaramrungruang, S., Thorpe, A. K., Matheou, G., & Frankenberg, C. (2022). MethaNet–an AI-driven approach to quantifying methane point-source emission from high-resolution 2-d plume imagery. Remote Sensing of Environment, 269, 112809. https://doi.org/10.1016/j.rse.2021.112809
Keppler, F., Boros, M., Frankenberg, C., Lelieveld, J., McLeod, A., Pirttilä, A. M., et al. (2009). Methane formation in aerobic environments. Environmental Chemistry, 6(6), 459–465. https://doi.org/10.1071/en09137
Key, R., Sander, S., Eldering, A., Miller, C., Frankenberg, C., Natraj, V., et al. (2012). The geostationary carbon process mapper. In 2012 IEEE aerospace conference (pp. 1–16). IEEE. https://doi.org/10.1109/aero.2012.6187029
Khokhar, M. F., Frankenberg, C., Hollwedel, J., Beirle, S., Kühl, S., Grzegorski, M., et al. (2005). Satellite remote sensing of atmospheric SO_2: Volcanic eruptions and anthropogenic emissions. https://doi.org/10.37099/mtu.dc.etd-restricted/35
Kimm, H., Guan, K., Jiang, C., Miao, G., Wu, G., Suyker, A. E., et al. (2021). A physiological signal derived from sun-induced chlorophyll fluorescence quantifies crop physiological response to environmental stresses in the US corn belt. Environmental Research Letters, 16(12), 124051. https://doi.org/10.1088/1748-9326/ac3b16
Koffi, E., Rayner, P., Norton, A., Frankenberg, C., & Scholze, M. (2015). Investigating the usefulness of satellite-derived fluorescence data in inferring gross primary productivity within the carbon cycle data assimilation system. Biogeosciences, 12(13), 4067–4084. https://doi.org/10.5194/bg-12-4067-2015
Köhler, P., Guanter, L., & Frankenberg, C. (2015). Simplified physically based retrieval of sun-induced chlorophyll fluorescence from GOSAT data. IEEE Geoscience and Remote Sensing Letters, 12(7), 1446–1450. https://doi.org/10.1109/lgrs.2015.2407051
Köhler, P., Frankenberg, C., Magney, T. S., Guanter, L., Joiner, J., & Landgraf, J. (2018). Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: First results and intersensor comparison to OCO-2. Geophysical Research Letters, 45(19), 10–456. https://doi.org/10.1029/2018gl079031
Köhler, P., Behrenfeld, M. J., Landgraf, J., Joiner, J., Magney, T. S., & Frankenberg, C. (2020). Global retrievals of solar-induced chlorophyll fluorescence at red wavelengths with TROPOMI. Geophysical Research Letters, 47(15), e2020GL087541. https://doi.org/10.1029/2020gl087541
Köhler, P., Fischer, W. W., Rossman, G. R., Grotzinger, J. P., Doughty, R., Wang, Y., et al. (2021). Mineral luminescence observed from space. Geophysical Research Letters, 48(19), e2021GL095227. https://doi.org/10.1029/2021gl095227
Konings, A. G., Saatchi, S. S., Frankenberg, C., Keller, M., Leshyk, V., Anderegg, W. R., et al. (2021). Detecting forest response to droughts with global observations of vegetation water content. Global Change Biology, 27(23), 6005–6024. https://doi.org/10.1111/gcb.15872
Kort, E. A., Frankenberg, C., Miller, C. E., & Oda, T. (2012). Space-based observations of megacity carbon dioxide. Geophysical Research Letters, 39(17), L17806. https://doi.org/10.1029/2012gl052738
Kort, E. A., Frankenberg, C., Costigan, K. R., Lindenmaier, R., Dubey, M. K., & Wunch, D. (2014). Four corners: The largest US methane anomaly viewed from space. Geophysical Research Letters, 41(19), 6898–6903. https://doi.org/10.1002/2014gl061503
Kuai, L., Worden, J., Kulawik, S., Bowman, K., Lee, M., Biraud, S. C., et al. (2013). Profiling tropospheric CO2 using aura TES and TCCON instruments. Atmospheric Measurement Techniques, 6, 63–79. https://doi.org/10.5194/amt-6-63-2013
Kühl, S., Wilms-Grabe, W., Beirle, S., Frankenberg, C., Grzegorski, M., Hollwedel, J., et al. (2004). Stratospheric chlorine activation in the arctic winters 1995/96–2001/02 derived from GOME OClO measurements. Advances in Space Research, 34(4), 798–803. https://doi.org/10.1016/s0273-1177(04)00472-7
Kühl, Sven, Wilms-Grabe, W., Frankenberg, C., Grzegorski, M., Platt, U., & Wagner, T. (2006). Comparison of OClO nadir measurements from SCIAMACHY and GOME. Advances in Space Research, 37(12), 2247–2253. https://doi.org/10.1016/j.asr.2005.06.061
Kulawik, S., Wunch, D., O’Dell, C., Frankenberg, C., Reuter, M., Oda, T., et al. (2016). Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON. Atmospheric Measurement Techniques, 9(2), 683–709. https://doi.org/10.5194/amt-9-683-2016
Kunik, L., Bowling, D. R., Raczka, B., Frankenberg, C., Köhler, P., Cheng, R., et al. (2023). Satellite-based solar-induced fluorescence tracks seasonal and elevational patterns of photosynthesis in california’s sierra nevada mountains. Environmental Research Letters, 19(1), 014008. https://doi.org/10.1088/1748-9326/ad07b4
Lee, J., Worden, J., Noone, D., Chae, J. H., & Frankenberg, C. (2015). Isotopic changes due to convective moistening of the lower troposphere associated with variations in the ENSO and IOD from 2005 to 2006. Tellus B: Chemical and Physical Meteorology, 67(1), 26177. https://doi.org/10.3402/tellusb.v67.26177
Lee, J.-E., Risi, C., Fung, I., Worden, J., Scheepmaker, R. A., Lintner, B., & Frankenberg, C. (2012). Asian monsoon hydrometeorology from TES and SCIAMACHY water vapor isotope measurements and LMDZ simulations: Implications for speleothem climate record interpretation. Journal of Geophysical Research: Atmospheres, 117(D15). https://doi.org/10.1029/2011jd017133
Lee, J.-E., Frankenberg, C., Tol, C. van der, Berry, J. A., Guanter, L., Boyce, C. K., et al. (2013). Forest productivity and water stress in amazonia: Observations from GOSAT chlorophyll fluorescence. Proceedings of the Royal Society B: Biological Sciences, 280(1761), 20130171. https://doi.org/10.1098/rspb.2013.0171
Lee, J.-E., Berry, J. A., Tol, C. van der, Yang, X., Guanter, L., Damm, A., et al. (2015). Simulations of chlorophyll fluorescence incorporated into the c ommunity l and m odel version 4. Global Change Biology, 21(9), 3469–3477. https://doi.org/10.1111/gcb.12948
Lee, R. A., O’Dell, C. W., Wunch, D., Roehl, C. M., Osterman, G. B., Blavier, J.-F., et al. (2017). Preflight spectral calibration of the orbiting carbon observatory 2. IEEE Transactions on Geoscience and Remote Sensing, 55(5), 2499–2508. https://doi.org/10.1109/tgrs.2011.2107745
Li, R., Lombardozzi, D., Shi, M., Frankenberg, C., Parazoo, N. C., Köhler, P., et al. (2022). Representation of leaf-to-canopy radiative transfer processes improves simulation of far-red solar-induced chlorophyll fluorescence in the community land model version 5. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002747. https://doi.org/10.1029/2021ms002747
Li, W., Pacheco-Labrador, J., Migliavacca, M., Miralles, D., Hoek van Dijke, A., Reichstein, M., et al. (2023). Widespread and complex drought effects on vegetation physiology inferred from space. Nature Communications, 14(1), 4640. https://doi.org/10.1038/s41467-023-40226-9
Li, X., Xiao, J., Kimball, J. S., Reichle, R. H., Scott, R. L., Litvak, M. E., et al. (2020). Synergistic use of SMAP and OCO-2 data in assessing the responses of ecosystem productivity to the 2018 US drought. Remote Sensing of Environment, 251, 112062. https://doi.org/10.1016/j.rse.2020.112062
Lin, C., Gentine, P., Frankenberg, C., Zhou, S., Kennedy, D., & Li, X. (2019). Evaluation and mechanism exploration of the diurnal hysteresis of ecosystem fluxes. Agricultural and Forest Meteorology, 278, 107642. https://doi.org/10.1016/j.agrformet.2019.107642
Liu, C., De Vries, M. P., Beirle, S., Hoor, P., Marbach, T., Frankenberg, C., et al. (2008). Relationship between ATSR fire counts and CO vertical column densities retrieved from SCIAMACHY onboard ENVISAT. In Remote sensing of fire: Science and application (Vol. 7089, pp. 121–130). SPIE. https://doi.org/10.1117/12.793283
Liu, C., Beirle, S., Butler, T., Liu, J., Hoor, P., Jöckel, P., et al. (2011). Application of SCIAMACHY and MOPITT CO total column measurements to evaluate model results over biomass burning regions and eastern china. Atmospheric Chemistry and Physics, 11(12), 6083–6114. https://doi.org/10.5194/acp-11-6083-2011
Liu, Cheng, Beirle, S., Butler, T., Hoor, P., Frankenberg, C., Jöckel, P., et al. (2014). Profile information on CO from SCIAMACHY observations using cloud slicing and comparison with model simulations. Atmospheric Chemistry and Physics, 14(3), 1717–1732. https://doi.org/10.5194/acp-14-1717-2014
Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M., et al. (2017). Contrasting carbon cycle responses of the tropical continents to the 2015–2016 el niño. Science, 358(6360), eaam5690. https://doi.org/10.1126/science.aar5432
Liu, J., Wennberg, P. O., Parazoo, N. C., Yin, Y., & Frankenberg, C. (2020). Observational constraints on the response of high-latitude northern forests to warming. AGU Advances, 1(4), e2020AV000228. https://doi.org/10.1029/2020av000228
Luis, K., Köhler, P., Frankenberg, C., & Gierach, M. (2023). First light demonstration of red solar induced fluorescence for harmful algal bloom monitoring. Geophysical Research Letters, 50(13), e2022GL101715. https://doi.org/10.1029/2022gl101715
Ma, S., Worden, J. R., Bloom, A. A., Zhang, Y., Poulter, B., Cusworth, D. H., et al. (2021). Satellite constraints on the latitudinal distribution and temperature sensitivity of wetland methane emissions. Agu Advances, 2(3), e2021AV000408. https://doi.org/10.1029/2021av000408
Magney, T. S., Frankenberg, C., Fisher, J. B., Sun, Y., North, G. B., Davis, T. S., et al. (2017). Connecting active to passive fluorescence with photosynthesis: A method for evaluating remote sensing measurements of chl fluorescence. New Phytologist, 215(4), 1594–1608. https://doi.org/10.1111/nph.14662
Magney, T. S., Frankenberg, C., Köhler, P., North, G., Davis, T. S., Dold, C., et al. (2019). Disentangling changes in the spectral shape of chlorophyll fluorescence: Implications for remote sensing of photosynthesis. Journal of Geophysical Research: Biogeosciences, 124(6), 1491–1507. https://doi.org/10.1029/2019jg005029
Magney, T. S., Bowling, D. R., Logan, B. A., Grossmann, K., Stutz, J., Blanken, P. D., et al. (2019). Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proceedings of the National Academy of Sciences, 116(24), 11640–11645. https://doi.org/10.1073/pnas.1900278116
Maguire, A. J., Eitel, J. U., Magney, T. S., Frankenberg, C., Köhler, P., Orcutt, E. L., et al. (2021). Spatial covariation between solar-induced fluorescence and vegetation indices from arctic-boreal landscapes. Environmental Research Letters, 16(9), 095002. https://doi.org/10.1088/1748-9326/ac188a
Mandrake, L., Frankenberg, C., O’Dell, C., Osterman, G., Wennberg, P., & Wunch, D. (2013). Semi-autonomous sounding selection for OCO-2. Atmospheric Measurement Techniques, 6(10), 2851–2864. https://doi.org/10.5194/amt-6-2851-2013
Massart, S., Agusti-Panareda, A., Aben, I., Butz, A., Chevallier, F., Crevoisier, C., et al. (2014). Assimilation of atmospheric methane products into the MACC-II system: From SCIAMACHY to TANSO and IASI. Atmospheric Chemistry and Physics, 14(12), 6139–6158. https://doi.org/10.5194/acp-14-6139-2014
Meirink, J. F., Bergamaschi, P., Frankenberg, C., Dlugokencky, E. J., Gatti, L. V., Houweling, S., et al. (2007). Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: 2. Analysis of SCIAMACHY observations. Geophys. Res. https://doi.org/10.1029/2007jd009740
Meirink, J. F., Bergamaschi, P., Frankenberg, C., d’Amelio, M. T., Dlugokencky, E. J., Gatti, L. V., et al. (2008). Four-dimensional variational data assimilation for inverse modeling of atmospheric methane emissions: Analysis of SCIAMACHY observations. Journal of Geophysical Research: Atmospheres, 113(D17). https://doi.org/10.1029/2007jd009740
Miao, G., Guan, K., Suyker, A. E., Yang, X., Arkebauer, T. J., Walter-Shea, E. A., et al. (2020). Varying contributions of drivers to the relationship between canopy photosynthesis and far-red sun-induced fluorescence for two maize sites at different temporal scales. Journal of Geophysical Research: Biogeosciences, 125(2), e2019JG005051. https://doi.org/10.1029/2019jg005051
Miller, C. E., Frankenberg, C., Kuhnert, A. C., Spiers, G. D., Eldering, A., Rud, M., et al. (2016). Capturing complete spatial context in satellite observations of greenhouse gases. In Imaging spectrometry XXI (Vol. 9976, pp. 31–43). SPIE. https://doi.org/10.1117/12.2238766.5178875848001
Mohammed, G. H., Colombo, R., Middleton, E. M., Rascher, U., Tol, C. van der, Nedbal, L., et al. (2019). Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sensing of Environment, 231, 111177. https://doi.org/10.23880/oajar-16000291
Monteil, G., Houweling, S., Butz, A., Guerlet, S., Schepers, D., Hasekamp, O., et al. (2013). Comparison of CH4 inversions based on 15 months of GOSAT and SCIAMACHY observations. Journal of Geophysical Research: Atmospheres, 118(20), 11–807. https://doi.org/10.1002/2013jd019760
Nguyen, N. H., Turner, A. J., Yin, Y., Prather, M. J., & Frankenberg, C. (2020). Effects of chemical feedbacks on decadal methane emissions estimates. Geophysical Research Letters, 47(3), e2019GL085706. https://doi.org/10.1029/2019gl085706
O’Dell, C., Connor, B., Bösch, H., O’Brien, D., Frankenberg, C., Castano, R., et al. (2012). The ACOS CO 2 retrieval algorithm–part 1: Description and validation against synthetic observations. Atmospheric Measurement Techniques, 5(1), 99–121. https://doi.org/10.5194/amt-5-99-2012
Oshchepkov, S., Bril, A., Yokota, T., Wennberg, P. O., Deutscher, N. M., Wunch, D., et al. (2013). Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO2 retrievals over TCCON sites. Journal of Geophysical Research: Atmospheres, 118(3), 1493–1512. https://doi.org/10.1002/jgrd.50146
Parazoo, N. C., Bowman, K., Frankenberg, C., Lee, J.-E., Fisher, J. B., Worden, J., et al. (2013). Interpreting seasonal changes in the carbon balance of southern amazonia using measurements of XCO2 and chlorophyll fluorescence from GOSAT. Geophysical Research Letters, 40(11), 2829–2833. https://doi.org/10.1002/grl.50452
Parazoo, N. C., Bowman, K., Fisher, J. B., Frankenberg, C., Jones, D. B., Cescatti, A., et al. (2014). Terrestrial gross primary production inferred from satellite fluorescence and vegetation models. Global Change Biology, 20(10), 3103–3121. https://doi.org/10.3410/f.718444931.793499712
Parazoo, N. C., Barnes, E., Worden, J., Harper, A. B., Bowman, K. B., Frankenberg, C., et al. (2015). Influence of ENSO and the NAO on terrestrial carbon uptake in the texas-northern mexico region. Global Biogeochemical Cycles, 29(8), 1247–1265. https://doi.org/10.1002/2015gb005125
Parazoo, N. C., Frankenberg, C., Köhler, P., Joiner, J., Yoshida, Y., Magney, T., et al. (2019). Towards a harmonized long-term spaceborne record of far-red solar-induced fluorescence. Journal of Geophysical Research: Biogeosciences, 124(8), 2518–2539. https://doi.org/10.1029/2019jg005289
Parazoo, N. C., Magney, T., Norton, A., Raczka, B., Bacour, C., Maignan, F., et al. (2020). Wide discrepancies in the magnitude and direction of modeled solar-induced chlorophyll fluorescence in response to light conditions. Biogeosciences, 17(13), 3733–3755. https://doi.org/10.5194/bg-17-3733-2020
Peng, B., Guan, K., Zhou, W., Jiang, C., Frankenberg, C., Sun, Y., et al. (2020). Assessing the benefit of satellite-based solar-induced chlorophyll fluorescence in crop yield prediction. International Journal of Applied Earth Observation and Geoinformation, 90, 102126. https://doi.org/10.1016/j.jag.2020.102126
Petersen, A., Warneke, T., Frankenberg, C., Bergamaschi, P., Gerbig, C., Notholt, J., et al. (2010). First ground-based FTIR observations of methane in the inner tropics over several years. Atmospheric Chemistry and Physics, 10(15), 7231–7239. https://doi.org/10.5194/acp-10-7231-2010
Pierrat, Z., Magney, T., Parazoo, N. C., Grossmann, K., Bowling, D. R., Seibt, U., et al. (2022). Diurnal and seasonal dynamics of solar-induced chlorophyll fluorescence, vegetation indices, and gross primary productivity in the boreal forest. Journal of Geophysical Research: Biogeosciences, 127(2), e2021JG006588. https://doi.org/10.1029/2021jg006588
Pierrat, Z. A., Bortnik, J., Johnson, B., Barr, A., Magney, T., Bowling, D. R., et al. (2022). Forests for forests: Combining vegetation indices with solar-induced chlorophyll fluorescence in random forest models improves gross primary productivity prediction in the boreal forest. Environmental Research Letters, 17(12), 125006. https://doi.org/10.1088/1748-9326/aca5a0
Pinagé, E. R., Bell, D. M., Longo, M., Gao, S., Keller, M., Silva, C. A., et al. (2022). Forest structure and solar-induced fluorescence across intact and degraded forests in the amazon. Remote Sensing of Environment, 274, 112998. https://doi.org/10.1016/j.rse.2022.112998
Porcar-Castell, A., Tyystjärvi, E., Atherton, J., Van der Tol, C., Flexas, J., Pfündel, E. E., et al. (2014). Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges. Journal of Experimental Botany, 65(15), 4065–4095. https://doi.org/10.1093/jxb/eru191
Risi, C., Bony, S., Vimeux, F., Frankenberg, C., Noone, D., & Worden, J. (2010). Understanding the sahelian water budget through the isotopic composition of water vapor and precipitation. Journal of Geophysical Research: Atmospheres, 115(D24). https://doi.org/10.1029/2010jd014690
Risi, C., Noone, D., Worden, J., Frankenberg, C., Stiller, G., Kiefer, M., et al. (2012). Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations. Journal of Geophysical Research: Atmospheres, 117(D5). https://doi.org/10.1029/2011jd016621
Risi, C., Noone, D., Frankenberg, C., & Worden, J. (2013). Role of continental recycling in intraseasonal variations of continental moisture as deduced from model simulations and water vapor isotopic measurements. Water Resources Research, 49(7), 4136–4156. https://doi.org/10.1002/wrcr.20312
Sanghavi, S., & Frankenberg, C. (2023). Raman scattering in the earth’s atmosphere, part II: Radiative transfer modeling for remote sensing applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 311, 108791. https://doi.org/10.1016/j.jqsrt.2023.108791
Sanghavi, S., Nelson, R., Frankenberg, C., & Gunson, M. (2020). Aerosols in OCO-2/GOSAT retrievals of XCO2: An information content and error analysis. Remote Sensing of Environment, 251, 112053. https://doi.org/10.1016/j.rse.2020.112053
Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., et al. (2016). The global methane budget: 2000–2012. Earth System Science Data Discussions, 2016, 1–79. https://doi.org/10.5194/essd-2016-25-rc2
Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., et al. (2017). Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmospheric Chemistry and Physics, 17(18), 11135–11161. https://doi.org/10.5194/essd-2016-25-rc2
Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., et al. (2019). The global methane budget 2000–2017. Earth System Science Data Discussions, 2019, 1–136. https://doi.org/10.5194/essd-2016-25-rc2
Scheepmaker, R., Frankenberg, C., Galli, A., Butz, A., Schrijver, H., Deutscher, N., et al. (2012). Improved water vapour spectroscopy in the 4174-4300 cm-1 region and its impact on SCIAMACHY HDO/h 2 o measurements. Atmospheric Measurement Techniques Discussions, 5(6), 8539–8578. https://doi.org/10.5194/amt-6-879-2013
Scheepmaker, R., Frankenberg, C., Galli, A., Butz, A., Schrijver, H., Deutscher, N., et al. (2013). Improved water vapour spectroscopy in the 4174–4300 cm- 1 region and its impact on SCIAMACHY HDO/h 2 o measurements. Atmospheric Measurement Techniques, 6(4), 879–894. https://doi.org/10.5194/amt-6-879-2013
Scheepmaker, R., Frankenberg, C., Deutscher, N. M., Schneider, M., Barthlott, S., Blumenstock, T., et al. (2015). Validation of sciamachy HDO/h 2 o measurements using the TCCON and NDACC-MUSICA networks. Atmospheric Measurement Techniques, 8(4), 1799–1818. https://doi.org/10.5194/amt-8-1799-2015
Scheepmaker, R. A., Hu, H., Borsdorff, T., Frankenberg, C., Risi, C., Hasekamp, O., et al. (2016). HDO and h 2 o total column retrievals from TROPOMI shortwave infrared measurements. Atmospheric Measurement Techniques, 9(8), 3921–3937. https://doi.org/10.5194/amt-9-4955-2016
Schepers, D., Guerlet, S., Butz, A., Landgraf, J., Frankenberg, C., Hasekamp, O., et al. (2012). Methane retrievals from greenhouse gases observing satellite (GOSAT) shortwave infrared measurements: Performance comparison of proxy and physics retrieval algorithms. Journal of Geophysical Research, 117(D10), D10307. https://doi.org/10.1029/2012jd017549
Schimel, D., Pavlick, R., Fisher, J. B., Asner, G. P., Saatchi, S., Townsend, P., et al. (2015). Observing terrestrial ecosystems and the carbon cycle from space. Global Change Biology, 21(5), 1762–1776. https://doi.org/10.1111/gcb.12822
Schimmelmann, A., Ensminger, S. A., Drobniak, A., Mastalerz, M., Etiope, G., Jacobi, R. D., & Frankenberg, C. (2018). Natural geological seepage of hydrocarbon gas in the appalachian basin and midwest USA in relation to shale tectonic fracturing and past industrial hydrocarbon production. Science of the Total Environment, 644, 982–993. https://doi.org/10.1016/j.scitotenv.2018.06.374
Seyednasrollah, B., Bowling, D. R., Cheng, R., Logan, B. A., Magney, T. S., Frankenberg, C., et al. (2021). Seasonal variation in the canopy color of temperate evergreen conifer forests. New Phytologist, 229(5), 2586–2600. https://doi.org/10.1111/nph.17046
Spahni, R., Wania, R., Neef, L., Van Weele, M., Pison, I., Bousquet, P., et al. (2011). Constraining global methane emissions and uptake by ecosystems. Biogeosciences, 8(6), 1643–1665. https://doi.org/10.5194/bg-8-1643-2011
Sun, K., Liu, X., Nowlan, C. R., Cai, Z., Chance, K., Frankenberg, C., et al. (2017). Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements. Atmospheric Measurement Techniques, 10(3), 939–953. https://doi.org/10.5194/amt-2016-335-rc2
Sun, Y., Fu, R., Dickinson, R., Joiner, J., Frankenberg, C., Gu, L., et al. (2015a). Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: Insights from two contrasting extreme events. Journal of Geophysical Research: Biogeosciences, 120(11), 2427–2440. https://doi.org/10.1002/2015jg003150
Sun, Y., Fu, R., Dickinson, R. E., Joiner, J., Frankenberg, C., Gu, L., et al. (2015b). Satellite solar-induced chlorophyll fluorescence reveals drought onset mechanisms: Insights from two contrasting extreme events. In AGU fall meeting abstracts (Vol. 2015, pp. B43H–0647). https://doi.org/10.1002/2015jg003150
Sun, Y., Frankenberg, C., Wood, J. D., Schimel, D., Jung, M., Guanter, L., et al. (2017). OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science, 358(6360), eaam5747. https://doi.org/10.5194/essd-2021-237-supplement
Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P., & Magney, T. (2018). Overview of solar-induced chlorophyll fluorescence (SIF) from the orbiting carbon observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sensing of Environment, 209, 808–823. https://doi.org/10.1016/j.rse.2018.02.016
Sussmann, R., Foster, F., Borsdorff, T., De Mazière, M., Dils, B., Vigouroux, C., et al. (2008). Satellite validation of column-averaged methane on global scale: Ground-based data from 15 FTIR stations versus last generation ENVISAT/SCIAMACHY retrievals. In IGAC 10th international conference. https://doi.org/10.5194/acp-5-1497-2005
Tadić, J. M., Loewenstein, M., Frankenberg, C., Butz, A., Roby, M., Iraci, L. T., et al. (2014). A comparison of in situ aircraft measurements of carbon dioxide and methane to GOSAT data measured over railroad valley playa, nevada, USA. IEEE Transactions on Geoscience and Remote Sensing, 52(12), 7764–7774. https://doi.org/10.5194/amtd-5-5641-2012
Tan, Z., Zhuang, Q., Henze, D. K., Frankenberg, C., Dlugokencky, E., Sweeney, C., et al. (2016). Inverse modeling of pan-arctic methane emissions at high spatial resolution: What can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models? Atmospheric Chemistry and Physics, 16(19), 12649–12666. https://doi.org/10.5194/acp-16-12649-2016
Tanaka, T., Yates, E., Iraci, L. T., Johnson, M. S., Gore, W., Tadić, J. M., et al. (2016). Two-year comparison of airborne measurements of CO 2 and CH 4 with GOSAT at railroad valley, nevada. IEEE Transactions on Geoscience and Remote Sensing, 54(8), 4367–4375. https://doi.org/10.1109/tgrs.2016.2539973
Taylor, T. E., O’Dell, C. W., Frankenberg, C., Partain, P. T., Cronk, H. Q., Savtchenko, A., et al. (2016). Orbiting carbon observatory-2 (OCO-2) cloud screening algorithms: Validation against collocated MODIS and CALIOP data. Atmospheric Measurement Techniques, 9(3), 973–989. https://doi.org/10.5194/amt-9-973-2016
Taylor, T. E., Eldering, A., Merrelli, A., Kiel, M., Somkuti, P., Cheng, C., et al. (2020). OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals. Remote Sensing of Environment, 251, 112032. https://doi.org/10.1016/j.rse.2020.112032
Thompson, D., Leifer, I., Bovensmann, H., Eastwood, M., Fladeland, M., Frankenberg, C., et al. (2015). Real-time remote detection and measurement for airborne imaging spectroscopy: A case study with methane. Atmospheric Measurement Techniques, 8(10), 4383–4397. https://doi.org/10.5194/amt-8-4383-2015
Thompson, D., Thorpe, A., Frankenberg, C., Green, R., Duren, R., Guanter, L., et al. (2016). Space-based remote imaging spectroscopy of the aliso canyon CH4 superemitter. Geophysical Research Letters, 43(12), 6571–6578. https://doi.org/10.1002/2016gl069079
Thompson, D. R., Thorpe, A. K., Frankenberg, C., Green, R. O., Duren, R. M., Aubrey, A. D., et al. (2016). The aliso canyon super-emitter: Initial results of observations by AVIRIS-c and the hyperion spacecraft, with implications for global spectroscopic CH 4 monitoring. In AGU fall meeting abstracts (Vol. 2016, pp. GC52A–04). https://doi.org/10.5642/aliso.19951402.05
Thompson, D. R., Natraj, V., Green, R. O., Helmlinger, M. C., Gao, B.-C., & Eastwood, M. L. (2018). Optimal estimation for imaging spectrometer atmospheric correction. Remote Sensing of Environment, 216, 355–373.
Thompson, D. R., Cawse-Nicholson, K., Erickson, Z., Fichot, C. G., Frankenberg, C., Gao, B.-C., et al. (2019). A unified approach to estimate land and water reflectances with uncertainties for coastal imaging spectroscopy. Remote Sensing of Environment, 231, 111198. https://doi.org/10.1016/j.rse.2019.05.017
Thompson, D. R., Green, R. O., Bradley, C., Brodrick, P. G., Mahowald, N., Dor, E. B., et al. (2024). On-orbit calibration and performance of the EMIT imaging spectrometer. Remote Sensing of Environment, 303, 113986.
Thorpe, A., Frankenberg, C., & Roberts, D. (2014). Retrieval techniques for airborne imaging of methane concentrations using high spatial and moderate spectral resolution: Application to AVIRIS. Atmospheric Measurement Techniques, 7(2), 491–506. https://doi.org/10.5194/amt-7-491-2014
Thorpe, Andrew K., Frankenberg, C., Aubrey, A., Roberts, D., Nottrott, A., Rahn, T., et al. (2016). Mapping methane concentrations from a controlled release experiment using the next generation airborne visible/infrared imaging spectrometer (AVIRIS-NG). Remote Sensing of Environment, 179, 104–115. https://doi.org/10.1016/j.rse.2018.06.018
Thorpe, Andrew K., Frankenberg, C., Green, R. O., Thompson, D. R., Aubrey, A. D., Mouroulis, P., et al. (2016). The airborne methane plume spectrometer (AMPS): Quantitative imaging of methane plumes in real time. In 2016 IEEE aerospace conference (pp. 1–14). IEEE. https://doi.org/10.1109/aero.2016.7500756
Thorpe, Andrew K., Frankenberg, C., Thompson, D. R., Duren, R. M., Aubrey, A. D., Bue, B. D., et al. (2017). Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: Application to AVIRIS-NG. Atmospheric Measurement Techniques, 10(10), 3833–3850. https://doi.org/10.5194/amt-10-3833-2017
Thorpe, Andrew K., Duren, R. M., Conley, S., Prasad, K. R., Bue, B. D., Yadav, V., et al. (2020). Methane emissions from underground gas storage in california. Environmental Research Letters, 15(4), 045005. https://doi.org/10.1088/1748-9326/ab751d
Thorpe, Andrew K., O’Handley, C., Emmitt, G. D., DeCola, P. L., Hopkins, F. M., Yadav, V., et al. (2021). Improved methane emission estimates using AVIRIS-NG and an airborne doppler wind lidar. Remote Sensing of Environment, 266, 112681. https://doi.org/https://doi.org/10.1016/j.rse.2021.112681
Thorpe, Andrew K., Dennison, P. E., Guanter, L., Frankenberg, C., & Aben, I. (2022). Special issue on remote sensing of greenhouse gas emissions. Remote Sensing of Environment. Elsevier. https://doi.org/10.1016/j.rse.2022.113069
Thorpe, Andrew K., Green, R. O., Thompson, D. R., Brodrick, P. G., Chapman, J. W., Elder, C. D., et al. (2023). Attribution of individual methane and carbon dioxide emission sources using EMIT observations from space. Science Advances, 9(46), eadh2391. https://doi.org/10.1126/sciadv.adh2391
Thorpe, Andrew K., Kort, E. A., Cusworth, D., Ayasse, A., Bue, B. D., Yadav, V., et al. (2023). Methane emissions decline from reduced oil, natural gas, and refinery production during COVID-19. Environmental Research Communications, 5(2), 021006. https://doi.org/10.1088/2515-7620/acb5e5
Tran, H., Hartmann, J.-M., Toon, G., Brown, L., Frankenberg, C., Warneke, T., et al. (2010). The 2\(\nu\)3 band of CH4 revisited with line mixing: Consequences for spectroscopy and atmospheric retrievals at 1.67 \(\mu\)m. Journal of Quantitative Spectroscopy and Radiative Transfer, 111(10), 1344–1356. https://doi.org/10.1016/j.jqsrt.2010.02.015
Turner, A. J., Frankenberg, C., Wennberg, P. O., & Jacob, D. J. (2017). Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. PNAS. April. https://doi.org/10.1073/pnas.1616020114
Turner, A. J., Frankenberg, C., & Kort, E. A. (2019). Interpreting contemporary trends in atmospheric methane. Proceedings of the National Academy of Sciences, 116(8), 2805–2813. https://doi.org/10.1073/pnas.1814297116
Turner, A. J., Köhler, P., Magney, T. S., Frankenberg, C., Fung, I., & Cohen, R. C. (2020). A double peak in the seasonality of california’s photosynthesis as observed from space. Biogeosciences, 17(2), 405–422. https://doi.org/10.5194/bg-2019-387-supplement
Turner, A. J., Kim, J., Fitzmaurice, H., Newman, C., Worthington, K., Chan, K., et al. (2020). Observed impacts of COVID-19 on urban CO 2 emissions. Geophysical Research Letters, 47(22), e2020GL090037. https://doi.org/10.1002/essoar.10504138.1
Turner, A. J., Köhler, P., Magney, T. S., Frankenberg, C., Fung, I., & Cohen, R. C. (2021). Extreme events driving year-to-year differences in gross primary productivity across the US. Biogeosciences, 18(24), 6579–6588. https://doi.org/10.5194/bg-18-6579-2021
Valkenborg, B., De Lannoy, G. J., Gruber, A., Miralles, D. G., Köhler, P., Frankenberg, C., et al. (2023). Drought and waterlogging stress regimes in northern peatlands detected through satellite retrieved solar-induced chlorophyll fluorescence. Geophysical Research Letters, 50(19), e2023GL105205. https://doi.org/10.1029/2023gl105205
Verma, M., Schimel, D., Evans, B., Frankenberg, C., Beringer, J., Drewry, D. T., et al. (2017). Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site. Journal of Geophysical Research: Biogeosciences, 122(3), 716–733. https://doi.org/10.1002/2016jg003580
Wagner, T., Beirle, S., Deutschmann, T., Eigemeier, E., Frankenberg, C., Grzegorski, M., et al. (2008). Monitoring of atmospheric trace gases, clouds, aerosols and surface properties from UV/vis/NIR satellite instruments. Journal of Optics A: Pure and Applied Optics, 10(10), 104019. https://doi.org/10.1088/1464-4258/10/10/104019
Wang, C., Guan, K., Peng, B., Chen, M., Jiang, C., Zeng, Y., et al. (2020). Satellite footprint data from OCO-2 and TROPOMI reveal significant spatio-temporal and inter-vegetation type variabilities of solar-induced fluorescence yield in the US midwest. Remote Sensing of Environment, 241, 111728. https://doi.org/10.1016/j.rse.2020.111728
Wang, X., Biederman, J. A., Knowles, J. F., Scott, R. L., Turner, A. J., Dannenberg, M. P., et al. (2022). Satellite solar-induced chlorophyll fluorescence and near-infrared reflectance capture complementary aspects of dryland vegetation productivity dynamics. Remote Sensing of Environment, 270, 112858. https://doi.org/10.1016/j.rse.2021.112858
Wang, Yujie, & Frankenberg, C. (2022a). Common ambiguities in plant hydraulics. Biogeosciences, 19(19), 4705–4714. https://doi.org/10.5194/bg-19-4705-2022
Wang, Yujie, & Frankenberg, C. (2022b). On the impact of canopy model complexity on simulated carbon, water, and solar-induced chlorophyll fluorescence fluxes. Biogeosciences, 19(1), 29–45. https://doi.org/10.5194/bg-19-29-2022
Wang, Yujie, Anderegg, W. R., Venturas, M. D., Trugman, A. T., Yu, K., & Frankenberg, C. (2021). Optimization theory explains nighttime stomatal responses. New Phytologist, 230(4), 1550–1561. https://doi.org/10.1111/nph.17267
Wang, Yujie, Köhler, P., Braghiere, R. K., Longo, M., Doughty, R., Bloom, A. A., & Frankenberg, C. (2022). GriddingMachine, a database and software for earth system modeling at global and regional scales. Scientific Data, 9(1), 258. https://doi.org/10.1038/s41597-022-01346-x
Wang, Yuan, Liu, J., Wennberg, P. O., He, L., Bonal, D., Köhler, P., et al. (2023). Elucidating climatic drivers of photosynthesis by tropical forests. Global Change Biology, 29(17), 4811–4825. https://doi.org/10.1111/gcb.16837
Wang, Y., Braghiere, R., Longo, M., Norton, A., Köhler, P., Doughty, R., et al. (2023). Modeling global vegetation gross primary productivity, transpiration and hyperspectral canopy radiative transfer simultaneously using a next generation land surface model—CliMA land. Journal of Advances in Modeling Earth Systems, 15(3), e2021MS002964. https://doi.org/10.1029/2021ms002964
Wecht, K. J., Jacob, D. J., Frankenberg, C., Jiang, Z., & Blake, D. R. (2014). Mapping of north american methane emissions with high spatial resolution by inversion of SCIAMACHY satellite data. Journal of Geophysical Research: Atmospheres, 119(12), 7741–7756. https://doi.org/10.1002/2014jd021551
Whelan, M. E., Anderegg, L. D., Badgley, G., Campbell, J. E., Commane, R., Frankenberg, C., et al. (2020). Scientific communities striving for a common cause: Innovations in carbon cycle science. Bulletin of the American Meteorological Society, 101(9), E1537–E1543. https://doi.org/10.1175/bams-d-19-0306.1
Wood, J. D., Griffis, T. J., Baker, J. M., Frankenberg, C., Verma, M., & Yuen, K. (2017). Multiscale analyses of solar-induced florescence and gross primary production. Geophysical Research Letters, 44(1), 533–541. https://doi.org/10.1002/2016gl070775
Wood, J. D., Gu, L., Hanson, P. J., Frankenberg, C., & Sack, L. (2023). The ecosystem wilting point defines drought response and recovery of a quercus-carya forest. Global Change Biology, 29(7), 2015–2029. https://doi.org/10.3410/f.742480493.793597504
Worden, H., Deeter, M., Frankenberg, C., George, M., Nichitiu, F., Worden, J., et al. (2013). Decadal record of satellite carbon monoxide observations. Atmos. Chem. Phys, 13, 837–850. https://doi.org/10.5194/acp-13-837-2013
Worden, J., Kulawik, S., Frankenberg, C., Payne, V., Bowman, K., Cady-Peirara, K., et al. (2012). Profiles of CH 4, HDO, h 2 o, and n 2 o with improved lower tropospheric vertical resolution from aura TES radiances. Atmospheric Measurement Techniques, 5(2), 397–411. https://doi.org/10.5194/amt-5-397-2012
Worden, J., Wecht, K., Frankenberg, C., Alvarado, M., Bowman, K., Kort, E., et al. (2013). CH 4 and CO distributions over tropical fires during october 2006 as observed by the aura TES satellite instrument and modeled by GEOS-chem. Atmospheric Chemistry and Physics, 13(7), 3679–3692. https://doi.org/10.5194/acp-13-3679-2013
Worden, John, Jiang, Z., Jones, D. B., Alvarado, M., Bowman, K., Frankenberg, C., et al. (2013). El niño, the 2006 indonesian peat fires, and the distribution of atmospheric methane. Geophysical Research Letters, 40(18), 4938–4943. https://doi.org/10.1002/grl.50937
Worden, JR, Turner, A., Bloom, A., Kulawik, S., Liu, J., Lee, M., et al. (2015). Quantifying lower tropospheric methane concentrations using GOSAT near-IR and TES thermal IR measurements. Atmospheric Measurement Techniques, 8(8), 3433–3445. https://doi.org/10.5194/amt-8-3433-2015
Worden, J. R., Doran, G., Kulawik, S., Eldering, A., Crisp, D., Frankenberg, C., et al. (2017). Evaluation and attribution of OCO-2 XCO 2 uncertainties. Atmospheric Measurement Techniques, 10(7), 2759–2771. https://doi.org/10.5194/amt-2016-175-rc1
Wu, G., Guan, K., Jiang, C., Kimm, H., Miao, G., Bernacchi, C. J., et al. (2022). Attributing differences of solar-induced chlorophyll fluorescence (SIF)-gross primary production (GPP) relationships between two C4 crops: Corn and miscanthus. Agricultural and Forest Meteorology, 323, 109046. https://doi.org/10.1016/j.agrformet.2022.109046
Wu, G., Jiang, C., Kimm, H., Wang, S., Bernacchi, C., Moore, C. E., et al. (2022). Difference in seasonal peak timing of soybean far-red SIF and GPP explained by canopy structure and chlorophyll content. Remote Sensing of Environment, 279, 113104. https://doi.org/10.1016/j.rse.2022.113104
Wunch, D., Wennberg, P., Toon, G., Connor, B., Fisher, B., Osterman, G., et al. (2011). A method for evaluating bias in global measurements of CO 2 total columns from space. Atmospheric Chemistry and Physics, 11(23), 12317–12337. https://doi.org/10.5194/acp-11-12317-2011
Xia, J., Niu, S., Ciais, P., Janssens, I. A., Chen, J., Ammann, C., et al. (2015). Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proceedings of the National Academy of Sciences, 112(9), 2788–2793. https://doi.org/10.1016/b978-012505290-0/50005-3
Xu, L., Saatchi, S. S., Yang, Y., Myneni, R. B., Frankenberg, C., Chowdhury, D., & Bi, J. (2015). Satellite observation of tropical forest seasonality: Spatial patterns of carbon exchange in amazonia. Environmental Research Letters, 10(8), 084005. https://doi.org/10.1088/1748-9326/10/8/084005
Yang, J., Xiao, X., Doughty, R., Zhao, M., Zhang, Y., Köhler, P., et al. (2022). TROPOMI SIF reveals large uncertainty in estimating the end of plant growing season from vegetation indices data in the tibetan plateau. Remote Sensing of Environment, 280, 113209. https://doi.org/10.1016/j.rse.2022.113209
Yang, J. C., Magney, T. S., Albert, L. P., Richardson, A. D., Frankenberg, C., Stutz, J., et al. (2022). Gross primary production (GPP) and red solar induced fluorescence (SIF) respond differently to light and seasonal environmental conditions in a subalpine conifer forest. Agricultural and Forest Meteorology, 317, 108904. https://doi.org/10.1016/j.agrformet.2022.108904
Yin, Y., Chevallier, F., Ciais, P., Bousquet, P., Saunois, M., Zheng, B., et al. (2020). Accelerating methane growth rate from 2010 to 2017: Leading contributions from the tropics and east asia. Atmospheric Chemistry & Physics Discussions. https://doi.org/10.5194/acp-21-12631-2021
Yin, Y., Byrne, B., Liu, J., Wennberg, P. O., Davis, K. J., Magney, T., et al. (2020). Cropland carbon uptake delayed and reduced by 2019 midwest floods. AGU Advances, 1(1), e2019AV000140. https://doi.org/10.5194/egusphere-egu2020-12141
Yin, Y., Bloom, A. A., Worden, J., Saatchi, S., Yang, Y., Williams, M., et al. (2020). Fire decline in dry tropical ecosystems enhances decadal land carbon sink. Nature Communications, 11(1), 1900. https://doi.org/10.1038/s41467-020-15852-2
Yin, Y., Chevallier, F., Ciais, P., Bousquet, P., Saunois, M., Zheng, B., et al. (2021). Accelerating methane growth rate from 2010 to 2017: Leading contributions from the tropics and east asia. Atmospheric Chemistry and Physics, 21(16), 12631–12647. https://doi.org/10.5194/acp-21-12631-2021
Yin, Y., He, L., Wennberg, P. O., & Frankenberg, C. (2023). Unequal exposure to heatwaves in los angeles: Impact of uneven green spaces. Science Advances, 9(17), eade8501. https://doi.org/10.1126/sciadv.ade8501
Yoshimura, K., Frankenberg, C., Lee, J., Kanamitsu, M., Worden, J., Röckmann, T., & Yoshimura, K. (2011). Comparison of an isotopic AGCM with new quasi global satellite measurements of water vapor isotopologues. J. Geophys. Res., 116. https://doi.org/10.1029/2011jd016035
Zeng, Y., Hao, D., Huete, A., Dechant, B., Berry, J., Chen, J. M., et al. (2022). Optical vegetation indices for monitoring terrestrial ecosystems globally. Nature Reviews Earth & Environment, 3(7), 477–493. https://doi.org/10.1038/s43017-022-00298-5
Zeng, Y., Hao, D., Park, T., Zhu, P., Huete, A., Myneni, R., et al. (2023). Structural complexity biases vegetation greenness measures. Nature Ecology & Evolution, 7(11), 1790–1798. https://doi.org/10.1038/s41559-023-02187-6
Zhang, Zhaoying, Zhang, Y., Zhang, Y., Gobron, N., Frankenberg, C., Wang, S., & Li, Z. (2020). The potential of satellite FPAR product for GPP estimation: An indirect evaluation using solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 240, 111686. https://doi.org/10.1016/j.rse.2020.111686
Zhang, Zhen, Poulter, B., Feldman, A. F., Ying, Q., Ciais, P., Peng, S., & Li, X. (2023). Recent intensification of wetland methane feedback. Nature Climate Change, 13(5), 430–433. https://doi.org/10.1038/s41558-023-01629-0
Zuromski, L. M., Bowling, D. R., Köhler, P., Frankenberg, C., Goulden, M. L., Blanken, P. D., & Lin, J. C. (2018). Solar-induced fluorescence detects interannual variation in gross primary production of coniferous forests in the western united states. Geophysical Research Letters, 45(14), 7184–7193. https://doi.org/10.1029/2018gl077906


Lead Institution


Instrument and
Mission Management

© 2025 California Institute of Technology. All Rights Reserved.


Spacecraft and
Mission Operations