• Home
  • Team
  • Science
  • Publications
  • Visual Stories
    • CH4
    • Clouds
  • News

Collaborators | Andre Butz

Andre Butz

Science team member
Heidelberg University, Germany

Github Google Scholar OrcidID

Andre Butz is Professor of Atmospheric Physics at the Institute of Environmental Physics at Heidelberg University, Germany. He is a member of the Carbon-I Science Team.

Dr. Butz’ research centers on understanding the variability and trends in the gaseous composition of the atmosphere and how these relate to mechanistic changes in the Earth system. To this end, for more than 20 years, Dr. Butz has been developing next-generation spectroscopic instruments [Strandgren et al. (2020);Palmer et al. (2022);low_portable_2023;schmitt_open-path_2023] and algorithms (A. Butz et al., 2011) that enable more precise and more granular insights (Jungmann et al., 2022) into the composition of the Earth’s atmosphere with a particular focus on carbon dioxide and methane. Using these methods in remote sensing applications and collecting data from various platforms including satellites (Hu et al., 2018), balloons (A. Butz et al., 2007, 2009) and ground-based carriers (André Butz et al., 2022,knapp_spectrometric_2023), Dr. Butz aims at deciphering the processes that drive the variability in the global carbon cycle (Metz et al., 2023) and in atmospheric photochemistry (Voss et al., 2024).

Education

  • PhD in Physics | Heidelberg University, Germany | 2002 - 2006
  • M.A. in Physics | State University of New York at Stony Brook, USA | 2001 - 2002
  • Undergraduate Studies in Physics | University of Wuerzburg, Germany | 1998 - 2001

Professional Experience

  • 2018-present: Professor, Institute of Environmental Physics, Heidelberg University, Germany
  • 2016-2018: Head of department, German Aerospace Center (DLR e.V); Professor, Meteorological Institute, University of Munich (LMU), Germany
  • 2011-2016: Group leader (Emmy-Noether fellow of DFG), Karlsruhe Institute of Technology (KIT), Germany
  • 2007-2011: Postdoctoral research at SRON-Netherlands Institute of Space Research, The Netherlands

Closing tropical data gaps to resolve global carbon-budget uncertainties

References

Butz, A., Bösch, H., Camy-Peyret, C., Dorf, M., Engel, A., Payan, S., & Pfeilsticker, K. (2007). Observational constraints on the kinetics of the ClO-BrO and ClO-ClO ozone loss cycles in the Arctic winter stratosphere. Geophys. Res. Lett., 34(5). https://doi.org/10.1029/2006GL028718
Butz, A., Bösch, H., Camy-Peyret, C., Chipperfield, M. P., Dorf, M., Kreycy, S., et al. (2009). Constraints on inorganic gaseous iodine in the tropical upper troposphere and stratosphere inferred from balloon-borne solar occultation observations. Atmos. Chem. Phys., 9(18), 7229–7242. https://doi.org/10.5194/acp-9-7229-2009
Butz, A., Guerlet, S., Hasekamp, O., Schepers, D., Galli, A., Aben, I., et al. (2011). Toward accurate CO\(_{\textrm{2}}\) and CH\(_{\textrm{4}}\) observations from GOSAT. Geophys. Res. Lett., 38(14), n/a–n/a. https://doi.org/10.1029/2011GL047888
Butz, André, Hanft, V., Kleinschek, R., Frey, M. M., Müller, A., Knapp, M., et al. (2022). Versatile and Targeted Validation of Space-Borne XCO\(_{\textrm{2}}\), XCH\(_{\textrm{4}}\) and XCO Observations by Mobile Ground-Based Direct-Sun Spectrometers. Front. Remote Sens., 2, 775805. https://doi.org/10.3389/frsen.2021.775805
Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., Aan de Brugh, J., Aben, I., et al. (2018). Toward Global Mapping of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT. Geophys. Res. Lett., 45(8), 3682–3689. https://doi.org/10.1002/2018GL077259
Jungmann, M., Vardag, S. N., Kutzner, F., Keppler, F., Schmidt, M., Aeschbach, N., et al. (2022). Zooming-in for climate action—hyperlocal greenhouse gas data for mitigation action? Clim. Action, 1(1), 8. https://doi.org/10.1007/s44168-022-00007-4
Knapp, M., Scheidweiler, L., Külheim, F., Kleinschek, R., Necki, J., Jagoda, P., & Butz, A. (2023). Spectrometric imaging of sub-hourly methane emission dynamics from coal mine ventilation. Environmental Research Letters, 18(4), 044030. https://doi.org/10.1088/1748-9326/acc346
Löw, B. A., Kleinschek, R., Enders, V., Sander, S. P., Pongetti, T. J., Schmitt, T. D., et al. (2023). A portable reflected-sunlight spectrometer for CO\(_{\textrm{2}}\) and CH\(_{\textrm{4}}\). Atmos. Meas. Tech., 16(21), 5125–5144. https://doi.org/10.5194/amt-16-5125-2023
Metz, E.-M., Vardag, S. N., Basu, S., Jung, M., Ahrens, B., El-Madany, T., et al. (2023). Soil respiration-driven CO\(_{\textrm{2}}\) pulses dominate Australia’s flux variability. Science, 379(6639), 1332–1335. https://doi.org/10.1126/science.add7833
Palmer, P. I., Woodwark, A. J. P., Finch, D. P., Taylor, T. E., Butz, A., Tamminen, J., et al. (2022). Role of space station instruments for improving tropical carbon flux estimates using atmospheric data. Npj Microgravity, 8(1), 51. https://doi.org/10.1038/s41526-022-00231-6
Schmitt, T. D., Kuhn, J., Kleinschek, R., Löw, B. A., Schmitt, S., Cranton, W., et al. (2023). An open-path observatory for greenhouse gases based on near-infrared Fourier transform spectroscopy. Atmos. Meas. Tech., 16(24), 6097–6110. https://doi.org/10.5194/amt-16-6097-2023
Strandgren, J., Krutz, D., Wilzewski, J., Paproth, C., Sebastian, I., Gurney, K. R., et al. (2020). Towards spaceborne monitoring of localized CO\(_{\textrm{2}}\) emissions: An instrument concept and first performance assessment. Atmos. Meas. Tech., 13(6), 2887–2904. https://doi.org/10.5194/amt-13-2887-2020
Voss, K., Holzbeck, P., Pfeilsticker, K., Kleinschek, R., Wetzel, G., Fuentes Andrade, B., et al. (2024). A novel, balloon-borne UV/visible spectrometer for direct sun measurements of stratospheric bromine. EGUsphere, 2024, 1–33.


Lead Institution


Instrument and
Mission Management

© 2025 California Institute of Technology. All Rights Reserved.


Spacecraft and
Mission Operations